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Abstract

We estimate the causes and consequences of regional variation in healthcare uti-
lization in the setting of Cesarean sections (C-sections), the most common inpatient
surgery in the United States. C-section rates differ up to 10-fold across hospitals, with
substantial variation even for clinically similar patients. Using nationwide Medicaid
administrative claims data, covering 42% of all US births, we leverage physician mo-
bility across hospitals to disentangle the role of physician practice style from hospital
environment. We find that differences in physician practice style can explain over one
quarter of the across-hospital differences in C-section rates. This variation in practice
style has meaningful consequences for patient health: low-risk patients quasi-randomly
assigned to more C-section-intensive physicians are 10% more likely to deliver via
unplanned C-section, leading to worse maternal health outcomes without measurable
improvements in infant health. Our findings highlight physician practice style as an
important driver of variation in obstetric care with direct consequences for maternal
health. JEL Classification: I10, I18
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1. Introduction

In the United States (US), healthcare spending and utilization vary sharply across regions,

even after adjusting for differences in patient health (Skinner, 2011). In many cases, higher

treatment intensity is not accompanied by improvements in health outcomes, suggesting that

reducing unnecessary utilization could lower healthcare costs without harming health (Doyle

et al., 2017; Einav et al., 2023). While the literature has explored the determinants of this

geographic variation in healthcare spending, relatively little work has directly examined the

health consequences of this variation. Additionally, most existing work focuses on the over-65

Medicare population, necessarily excluding critical specialties such as obstetrics (Badinski

et al., 2024; Finkelstein et al., 2016).

Cesarean sections (C-sections) provide a natural setting to study variation in treatment

intensity, given their frequency and the substantial heterogeneity in utilization. Childbirth

is the most common reason for hospitalization in the US, and the C-section is the most

commonly performed inpatient surgery (Osterman et al., 2025). Roughly one in three US

births (32.3%) are delivered by C-section, with rates varying dramatically across hospitals,

from as low as 7% to as high as 70%.1 Beyond concerns over variation in utilization, there is

widespread concern that the C-section rate in the US is higher than medically indicated.2

While a C-section can be life-saving when medically necessary, it is a major abdominal surgery

involving health risks for mothers and infants, a longer recovery time, and higher costs.3

In this paper, we quantify the contribution of the primary supply-side agents in healthcare—

physicians and hospitals—to variation in C-section use across the US, and estimate the health

consequences of variation in physician practice style. We use full-count nationwide Medicaid

claims data from 2015-2019, which cover 42% of all US births, and focus our analysis on

unplanned C-sections among low-risk, first-time deliveries, a group for whom C-sections

1This variation cannot be fully explained by differences in underlying patient health; even among lower
risk births (singleton, non-breech, full term) hospital-level rates range from 2.4% to 36.5% (Kozhimannil
et al., 2013).

2For example, the Healthy People 2030 goals include reducing the C-section rate among low-risk women
with no prior births to a target of 23.6%. Rather than declining, the rate has increased from 25.9% in 2018
(when the goal was set) to 26.6% in 2023 (ODPHP, 2025)

3C-sections cost 40-50% more than vaginal deliveries, across insurance types (Truven Health Analytics,
2013; Valencia et al., 2022).
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are most likely to be marginal.4 Our empirical approach combines two complementary

sources of variation. Physician mobility across hospitals allows us to disentangle the role

of physician practice style in C-section rates from the hospital environment. Additionally,

the quasi-random assignment of patients to on-call physicians enables us to estimate the

causal effect of physician practice style on maternal and infant health. We find that physician

practice style explains a meaningful share of the variation in C-section use across hospitals,

and that physicians with a more C-section-intensive practice style negatively impact maternal

health outcomes for low-risk patients.

To decompose the variation in C-section use, we estimate an AKM-style model that

separates out the roles of the physician, the hospital environment, and underlying patient

health risk (Abowd et al., 1999). Estimating the determinants of C-section use is complicated

by non-random patient sorting across physicians and hospitals. To address this, our model

uses two sources of variation. First, physician mobility across hospitals, from both traditional

movers (physicians who shift all of their practice from one hospital to another) and “multi-

homers” (physicians who practice at multiple hospitals simultaneously), enables us to isolate

the physician contribution separately from the hospital environment. Second, the spontaneous

onset of labor for patients in our sample, combined with rotational variation in physician

shifts, creates quasi-random patient-physician matching within hospitals.

We find that approximately 65% of the difference in unscheduled C-section rates between

above- and below-median hospitals can be explained by differences in the hospital environment,

and 29% of the difference can be explained by differences in physician practice style.5 This

suggests that institutional factors—for example, clinical protocols, staffing ratios, and surgical

capacity—contribute most to the observed variation across hospitals. However, there is a

strikingly strong role of physicians, with differences in physician practice style explaining

over a quarter of the gap in C-section rate across high vs. low C-section hospitals. This

magnitude is notable given that, in prior work on cardiology, physician practice style explains

4Specifically, we restrict our sample to nulliparous (first-births), term (gestation ≥ 37 weeks), singleton,
and vertex (dropping breech pregnancies), which we denote with the acronym NTSV. We restrict to first births
because the delivery method of the first birth is highly predictive of subsequent deliveries. We additionally
drop all scheduled C-sections, focusing only on unplanned or emergency C-sections. The focus on NTSV
births is standard in the existing C-section literature.

5The remaining 6% is driven by differences in patient health risk
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relatively little of the variation across hospital referral regions (HRR) (Molitor, 2018). Our

estimates are closer in magnitude to those found for primary care utilization, suggesting

that, although obstetrics is a surgical specialty, there remains substantial scope for physician

discretion relative to other surgical fields (Badinski et al., 2024). Moreover, physicians do not

appear to sort into hospitals based on C-section intensity, leaving substantial variation in

physician C-section intensity even within hospitals. Taken together, our results indicate that

existing policies, targeted primarily at hospital- or state-level interventions, are unlikely to

fully address the geographic variation in C-section use.

Moving beyond identifying the drivers of C-section use, we estimate the causal effects of

physician practice style on maternal and infant health outcomes. For identification, we adopt

a judges-style design that exploits quasi-random assignment of patients to physicians within

hospitals. Although patients can select their prenatal care provider, the unpredictability of

labor and rotating physician shifts means that low-risk patients attempting vaginal birth are

effectively delivered by whichever physician is on duty. We find that patients assigned to a

physician with a 10 percentage point higher C-section intensity are 2.1 percentage points

more likely to receive a C-section, an increase of about 10%.6

Beyond delivery method, we find that physician practice style has meaningful consequences

for maternal health. Women quasi-randomly assigned to high C-section intensity physicians

have higher rates of severe delivery complications, along with higher rates of postpartum

infection, antibiotic use, and emergency room visits within 60 days of delivery. The adverse

maternal health outcomes do not appear to be offset by improvements to infant health. We

do not detect any statistically significant effects on neonatal outcomes, though the point

estimates suggest a slight negative effect. Additionally, infants delivered by higher-intensity

physicians have significantly higher rates of emergency room visits for respiratory illness

during the first year of life. This is consistent with existing evidence linking C-section delivery

to respiratory problems in infants (Card et al., 2023). We also find that women delivered by

high C-section physicians have worse postpartum mental health outcomes and lower fertility

rates. This result is noteworthy, given that mental health disorders are the leading cause of

6A 10 percentage point change in C-section intensity is roughly one standard deviation, or the effect of
moving from a physician at the 25th to 75th percentile of the C-section intensity distribution.
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maternal mortality in the postpartum period (Clarke et al., 2023). Taken together, these

findings indicate that physician practice style plays a central role in determining C-section

use and has meaningful consequences for both maternal and infant health.

We contribute to three related literatures. First, we build on the extensive literature in

health economics documenting and examining geographic variation in healthcare use across

the US. A growing body of research uses quasi-random changes in physician locations to

disentangle demand- and supply-side drivers of healthcare utilization (Badinski et al., 2024;

Finkelstein et al., 2016; Finkelstein et al., 2021; Fischer et al., 2023; Molitor, 2018; Song

et al., 2010). Much analysis has been done on the Medicare 65+ population, which excludes

large specialties such as obstetrics and pediatrics. We add to this literature by disentangling

physician effects from hospital factors in obstetrics and linking variation in practice style to

health outcomes. Childbirth is a particularly suitable context for this analysis, as the near

universality of hospital delivery limits concerns about patient selection into treatment, the

choice of delivery mode is binary, and the rate of surgical intervention is high.

We also contribute to a substantial body of literature examining the drivers of geographic

variation in C-section utilization. It is well-documented that there is large geographic variation

in C-section rates, even after adjusting for patient risk (Baicker et al., 2006; Card et al., 2023;

Fischer et al., 2023; Robinson et al., 2023). Even within a geographic area, physicians differ

in their propensity to perform C-sections on observably similar patients (Currie and MacLeod,

2017; Epstein and Nicholson, 2009; Goyert et al., 1989). One reason behind the large variation

in C-section usage is that the decision to perform a C-section involves considerable physician

discretion. Incentives have been found to influence decision-making at both the hospital and

physician levels. Hospital characteristics, including capacity (Corredor-Waldron et al., 2024),

management practices (La Forgia, 2023), malpractice environment (Currie and MacLeod,

2008), and ownership type (Johnson and Rehavi, 2016), have all been shown to influence

mode of delivery. At the physician level, the decision to perform a C-section has been shown

to respond to financial incentives (Allin et al., 2015; Gruber et al., 1999; Gruber and Owings,

1996; Keeler and Brodie, 1993), information asymmetries (Johnson and Rehavi, 2016), and

outcomes of the preceding delivery (Singh, 2021). Even time of day, (Son et al., 2020), day of

week (Costa-Ramón et al., 2022), and holidays (Jacobson et al., 2021) have been found to
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influence C-section rates.

However, parsing the role of patients, physicians, and hospitals in the overall geographic

variation in utilization has been held back as data is typically either granular (observing all

agents) but constrained to a smaller geographic region, or coarser (observing only patients

and counties) but covering the whole of the US. Moreover, many data sources are restricted

to inpatient or delivery records, limiting information on postpartum patient outcomes. The

granularity and nationwide coverage of the Medicaid data allows us to build on this literature

and separately estimate the contribution of both physicians and hospitals to differences in

C-section use. Our paper is most closely related to contemporaneous work by Deibler et al.,

2025, which leverages physician movement and firm acquisition to estimate the role of doctors,

firms, and facilities in C-section rates using commercial healthcare claims from 14 states. Our

paper differs along several dimensions. First, we use a national sample of Medicaid claims, a

particularly policy-relevant sample given Medicaid is the largest payer for maternity care in

the US. The second key difference is that we extend the analysis of variation to estimate the

causal effect of physician practice style on maternal and infant health outcomes, both during

delivery and postpartum.

We also contribute to the broader literature on the health implications of C-sections. The

health consequences of marginal C-sections are somewhat inconclusive and depend strongly

on both the context and the risk of the patient. Corredor-Waldron et al., 2024 find that

reductions in unscheduled C-sections for low-risk mothers, driven by variation in hospital

capacity, lead to lower infant and maternal complications, while reductions in unscheduled

C-sections for high-risk mothers have little effect on maternal complications but increase infant

complications. On the other hand, Card et al., 2023 find that births at hospitals with a higher

C-section rate have fewer delivery complications for infants, potentially outweighing small

negative consequences for maternal health. We estimate the causal effects of being treated by

a high C-section intensity physician for low-risk patients, keeping the hospital environment

fixed, and find negative implications for maternal health without compensating benefits to

newborns. This suggests that reducing marginal C-sections through policy targeting physician

practice style could have positive health benefits. Another key contribution of our findings is

the ability to observe long-run postpartum care outcomes for both mothers and infants. We
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provide novel evidence that marginal unplanned C-sections are associated with a higher risk

of maternal mental health complications postpartum, an important finding given that mental

health disorders are a leading cause of postpartum maternal mortality.

The rest of the paper proceeds as follows. Section 2 provides background on maternal

healthcare in the US and outlines the decision framework for C-sections. In Section 3, we

outline our data and summarize the geographic variation in C-section rates. Our empirical

strategy, exploiting physician migration to separate the role of physician practice style from

hospital environment, is detailed in Section 4. We present additive decomposition results

in Section 5. In Section 6 we explore the causal effect of the variation in physician practice

style on delivery method and maternal health outcomes. Results are shown in Section 7. In

Section 8 we discuss the implications of our findings and conclude.

2. Institutional Setting

The US C-section rate has risen significantly since the late 1990s (Figure 1), without ac-

companying improvements in maternal mortality or morbidity. This increase has raised

concerns of excessive use, particularly for low-risk pregnancies. The Department of Health

and Human Services, for example, in its Healthy People 2030 project, set a goal to reduce

C-sections among low-risk first-time births, from the 2018 rate of 25.9% to 23.6%. The

most recent rate, as of 2023, is 26.6% (ODPHP, 2025). Moreover, there is evidence that

C-sections are poorly targeted, with too many being used for low-risk deliveries and too few

among high-risk deliveries, deviations that are even more noticeable among racial minorities

(Corredor-Waldron et al., 2024; Robinson et al., 2023).

While C-sections can be lifesaving in the face of complications, the procedure carries

risks not present in vaginal delivery. For the mother, risks associated with C-section delivery

include infection, surgical damage to bladder or other organs, blood clots, and excessive

bleeding or hemorrhage (Hall and Bewley, 1999; NHS, 2017). Given that it is major abdominal

surgery, the recovery period is longer on average following a C-section compared to vaginal

birth, and patients who have had a C-section are more likely to be re-hospitalized and to

report prolonged pain after delivery (as high as 18% six months postpartum) (Declercq
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Figure 1: United States C-section rate, 1990-2023

Note: Data on annual C-section rate from NVSS. The top maroon line shows the overall C-section rate.
The blue line shows the C-section rate among low-risk first-births. Specifically, this sample is restricted to
nulliparous, term, singleton and vertex (NTSV) deliveries.

et al., 2008; Lydon-Rochelle, 2000). C-sections also increase maternal health risks for future

pregnancies, largely due to the formation of uterine scar tissue from the procedure (Alpay

et al., 2008; Ananth et al., 1997; Ecker and Frigoletto, 2007).7 Following a C-section, a

woman’s subsequent deliveries are very likely to also be C-sections, which compounds the

risks.8

There are also well-documented risks for infants, primarily in the form of respiratory issues.

C-section delivery is associated with risk of respiratory problems in infants immediately

following delivery, and higher rates of asthma, allergies, and infections in the year following

birth (Costa-Ramón et al., 2022; Liang et al., 2023; Wolf, 2018).9 On the other hand,

prolonged labors also pose risks, including infection10, birth injury, or oxygen deprivation to

the infant. The risk of maternal pelvic floor damage and severe laceration is also increased
7For example, a C-section increases the risk of placenta accreta: a condition where the placenta grows

into the uterine wall and does not detach after childbirth, risking major hemorrhage (Clark et al., 1985)
8In 2018, the rate of vaginal births following a C-section delivery (VBAC) was 13.3% (Osterman, 2020).
9There are several theorized mechanisms. One is that vaginal delivery is important for the development of

a baby’s gut microbiome, which assists the immune system in early life. Another is that vaginal delivery helps
remove amniotic fluid from the newborn’s lungs, something a C-section delivery does not have a mechanism
for.

10Bacterial infection of the amniotic fluid, membranes, placenta, or uterus during labor is known as
chorioamnionitis. Risk increases with prolonged labor or ruptured membranes and can affect both mothers
and infants.
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with vaginal births. In sum, there are risks to both delivery methods, and the health effects

of C-section delivery are dependent on the context.

The decision to perform a C-section can be made either before or after the onset of labor.

Studies in the US and elsewhere suggest that the share of C-sections performed due solely

to maternal request, absent a clear clinical indication, is extremely low.11 In most cases,

the decision to deliver via scheduled C-section is due to medical indication. In this paper,

we drop all scheduled C-sections and focus only on the outcome of unplanned C-sections

for patients who plan for a vaginal birth and undergo a trial of labor.12 Table 1 shows

the share of Medicaid deliveries occurring via scheduled and unplanned C-sections. After

delivering via C-section in a prior birth, most patients will have scheduled C-sections for all

subsequent births. Thus, the share of C-sections that occur after trial of labor is much higher

for first-time (nulliparous) deliveries. In medical claims, all unplanned C-sections must have

a diagnosis code that indicates the medical indication for the C-section. Table 2 shows that

the most commonly diagnosed indications for unplanned C-sections are fetal distress and

inadequate contractions.

Table 1: Rate of scheduled vs. unplanned C-sections in Medicaid 2015-2019

Delivery type All patients Low-risk first-births
Scheduled C-section 1,483,015 (19.0%) 63,414 ( 4.6%)
Attempted vaginal delivery 6,337,837 (81.0%) 1,312,624 (95.4%)

Unscheduled C-section 817,195 (10.4%) 248,426 (18.1%)
Vaginal 5,520,642 (70.6%) 1,064,198 (77.3%)

Total births 7,820,852 1,376,038
Notes: Table reports the count, and percent, of delivery type. Estimates from Medicaid 2015-2019. Unsched-
uled C-sections are defined as C-section deliveries following a trial of labor. We define trial of labor following
Gregory et al., 2002, see Appendix B for more details. In column 3, we restrict to low-risk first-births (NTSV).

11ACOG estimates the share of all births that fall into this category is 2.5% (ACOG, 2019). See also
Weaver et al., 2007. Even among patients with a previous C-section, surveys suggest that at term the majority
prefer an attempted VBAC (Emmett et al., 2011).

12We use emergency, unscheduled, and unplanned C-section interchangeably to refer to any C-section
delivery occurring after a trial of labor. Trial of labor is defined following (Gregory et al., 2002), see
Appendix B for more details.
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Table 2: Diagnosed medical indications in unplanned C-sections

Reason All patients Low-risk first-births
Fetal distress 64.30% (47.91) 60.49% (48.89)
Inadequate contractions or uterine fatigue 33.21% (47.10) 44.20% (49.66)
Umbilical cord complications (e.g. prolapse) 16.36% (36.99) 16.18% (36.82)
Obstructed labor (e.g. shoulder dystocia) 15.63% (36.31) 14.53% (35.24)
Disproportion due to pelvis malformation or fetal size 5.63% (23.04) 7.62% (26.53)
Placenta separation 3.24% (17.72) 1.63% (12.65)
Prolonged labor 2.46% (15.50) 3.23% (17.68)
Fever or infection in labor 1.94% (13.80) 2.43% (15.41)
Maternal distress or exhaustion 1.10% (10.44) 1.41% (11.78)
Antepartum hemorrhage 0.41% (6.40) 0.18% (4.22)
None of above reasons specified 4.90% (21.60) 5.28% (22.37)
N 817,195 248,426

Notes: Percent (and standard deviation) of commonly diagnosed medical indications for all unplanned
C-sections occurring after trial of labor in Medicaid, 2015-2019. Column 2 includes all Medicaid births with
an unplanned C-section, column 3 restricts to low-risk first-time births (NTSV). Note that diagnoses are not
mutually exclusive. The final row reports the share of unplanned C-sections for which none of the above
diagnoses are present.

2.1 Patient-Provider Assignment

The allocation of an outpatient clinic (for prenatal care) and a hospital is typically the

patient’s choice. There are several factors, specific to Medicaid, that shape this matching.

First, Medicaid tends to reimburse at lower rates relative to other forms of insurance, meaning

patient choice over providers is often more limited. Second, managed care programs within

Medicaid can also restrict the networks of available practices and hospitals. Moreover, because

Medicaid coverage is systematically more generous for pregnant patients than non-pregnant

patients, many patients will become eligible during pregnancy, and only then search for a

provider for prenatal care, meaning they will have minimal history with a given practice.

Because patients will typically need to see a provider soon after becoming pregnant, the

search is urgent and often means that matching is subject to clinics’ capacity constraints;

in other words, which clinic has availability when the patient becomes pregnant. Several

obstetricians and gynecologists told us in interviews that, in practice, most Medicaid patients

will have “one option” for prenatal care and delivery in their local area.

Patients in spontaneous labor typically present to a predetermined hospital after the onset
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of labor. While the estimated gestation length is 40 weeks, the exact date of delivery is highly

unpredictable.13 Even when labor is induced, rather than occurring spontaneously, the exact

date of delivery is unpredictable. Most inductions are for medical reasons (e.g., preeclampsia,

gestation after 41 weeks), and are usually relatively urgent with limited flexibility in scheduling.

If induction occurs due to maternal preference, scheduling is subject to hospital capacity

constraints, which can impact the date and time.14 Moreover, medical induction of labor

(from administering induction to delivery) can take anywhere from a few hours to two or

three days.

Physicians working on the labor and delivery ward can either be hospitalists (physicians

who specialize in delivery and do not work in an outpatient clinic) or physicians on rotation

from a group practice (with an outpatient clinic) or solo practice. Although obstetric

hospitalists are growing in popularity, the vast majority of delivering physicians work in

group practices and see patients both during outpatient clinic visits and in the hospital

for delivery (ACOG, 2016). Typically, physicians will set hospital delivery shifts a couple

of months in advance (the remainder of their time being spent in an outpatient clinic).15

Matching is therefore done in an emergent setting, based on the (unpredictable) delivery date

and which physician is on-call.16 In our sample of low-risk (NTSV) and unplanned deliveries

with Medicaid insurance, approximately half of all patients had never seen their delivering

physician for any prenatal care.

13Less than 5% of all births occur on the estimated due date (Khambalia et al., 2013)
14For example, elective inductions are typically the first patients to be “bumped” due to capacity constraints.

Anecdotally, many hospitals use wait-lists for non-urgent inductions, whereby patients scheduled for induction
are on “standby” until a bed is available.

15Obstetricians and gynecologists we interviewed said that inpatient shifts would be set between one and
three months in advance, and shifts are strictly followed. All were clear that patients would not be routed
to a particular physician upon arrival in the hospital except in the rarest of circumstances. This is in part
because if a patient had a particularly complex pregnancy, she would often be scheduled for a C-section,
rather than waiting to go into labor. Instead, patients would be allocated the next available physician, either
an obstetrician from their group practice or a hospitalist.

16In theory, this is done within the physicians in the group practice a patient attends. However, the pool
of potential physicians is often extended in two ways. First, hospitalists are typically included in the pool
(and comprise a growing share of obstetricians who perform deliveries) (Johnson et al., 2016). Second, group
practices can form “alliances” for inpatient shifts, committing to deliver any patients from the pool of group
practices when they arrive at the labor and delivery ward. This can ease the scheduling burden for smaller
group practices and allow physicians to operate across multiple hospitals more easily.
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3. Data and Descriptives

3.1 Medicaid Claims, 2015-2019

Our primary data source is the complete sample of nationwide Medicaid claims data from

2015-2019. Medicaid is a means-tested program providing health insurance to low-income

individuals, and the largest payer for birth in the US, covering 42% of deliveries.17 Medicaid

beneficiaries are a particularly policy-relevant population, as an estimated 80% of all maternal

mortality occurs among women covered by Medicaid during pregnancy (Hill and Sventek,

2025). Medicaid claims are available in two formats. The Medicaid Analytic eXtract (MAX)

files cover 1999 through 2015, while the Transformed Medicaid Statistical Information System

Analytic Files (TAF) begin in 2015, coinciding with the transition from ICD-9 to ICD-10

coding. Our main analysis uses TAF claims from 2015 to 2019, although the 2015 TAF data

are incomplete due to the transition. We also use MAX data from 2011 to 2015 to help verify

parity (number of previous births).

Our data includes service-level claims for all inpatient and outpatient visits covering

prenatal, delivery, and postpartum care. Each patient interaction covered by Medicaid

(including all inpatient and outpatient visits) generates a claim with diagnoses and procedure

codes, as well as the billing provider and physicians associated with the service. Hospitals

typically bill for deliveries, allowing us to identify the hospital from the billing provider ID.

See Appendix B for more details. We link physicians to the Center for Medicare and Medicaid

Services’ (CMS) National Provider and Plan Enumeration System (NPPES) registry and

the American Medical Association (AMA) masterfile, which gives us additional demographic,

education, and specialty information for physicians. Medicaid also collects some demographic

information on beneficiaries, including race and ethnicity. To address missing data in these

fields, we assign to each beneficiary their most frequently reported race between 2011 and

2019.

To identify births in the Medicaid claims data, we follow the approach recommended by

Auty et al., 2024. We outline our process of identifying births and how we use the information
17This high share reflects, in part, more generous income thresholds for eligibility during pregnancy. We

provide additional information on these, as well as the structure of Medicaid insurance, in Appendix A.
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associated with claims to code our variables of interest in Appendix B.18 Medicaid provides

summary tables of data quality concerns in the Medicaid files across years (DQAtlas), and

both inpatient diagnosis and procedure codes are of high quality across most states.19 Because

the variables we rely on are low- or medium-concern in most states, and because we are

focusing on a relatively narrow subset of the Medicaid population (only claims for birth

and postpartum), we opt to include all states and benchmark all estimates to the rates for

Medicaid deliveries recorded in the CDC’s National Vital Statistics System (NVSS). The

benchmarking exercise, both for the number of births and rates of key variables, is reported

in Appendix C. In four states (AR, MA, RI, TN), the number of Medicaid births reported in

the CDC’s National Vital Statistics System (NVSS) differs from the number of births we

identify in Medicaid claims data by more than 20%. All results are robust to dropping these

states from our analysis.

For a subset of states, we are able to link mothers’ birth claims to newborn outcomes.

We follow the deterministic linking algorithm developed by Orr et al., 2024 to identify

mother-infant dyads using a combination of case ID, date of delivery, ZIP of the delivering

hospital, beneficiary residence ZIP, and race/ethnicity. We only include states in our newborn

outcome analysis in which we find a unique match for over 75% of all births. See Appendix B

for further discussion of the linking algorithm and match rates.

In our main analysis, we make several sample restrictions, outlined in Table 3. First, we

restrict to births for which we can identify an individual physician associated with the claim

and the hospital of delivery.20 We additionally require all delivering providers to have been

observed on at least 100 delivery claims during the sample period. Given that the delivery

method of higher order pregnancies is strongly correlated with the delivery method of prior

18Note that our sample of births, and associated outcomes, relies on diagnosis and procedure codes from
the TAF inpatient (IP) files, supplemented with the “other services” (OT) files in light of findings from (Auty
et al., 2024) that find some states have a considerable share of births recorded in the OT files.

19The exceptions to this are 1) MD procedure codes are flagged as “unusable” in all years and diagnosis
codes “unusable” in 2016-2017, 2) TX procedure codes are “medium concern” in all years, 3) KY procedure
codes are unusable in 2016, and 4) TN diagnosis codes are “unusable” in most years, however note that there
is a known issue with leading zeros in TN ICD codes.

20For details on variables used to identify the hospital and physician associated with a delivery, see
Appendix B. All analysis is restricted to births delivered by physicians with specialties in OB/GYN, family
medicine, or general practice. Of our sample, 98% of physicians are OB/GYNs, and all results are robust to
restricting to only OB/GYNs.
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birth(s), we restrict our main analysis to only first births (nulliparous).21 In most of our

analysis, we focus on a subset of births that are term (gestation of ≥ 37 weeks), singleton,

and vertex. This sample of nulliparous, term, singleton, and vertex (NTSV) is a common

classification often used in maternal healthcare research to indicate low risk. To mitigate

selection concerns, we eliminate all scheduled C-sections from our analysis.22 The C-section

rate for NTSV patients is especially policy relevant, as these procedures are more likely to be

marginal and, due to the dynamic effects of delivery method, reducing C-sections for first

births has compounding effects on subsequent deliveries.

Table 3: Sample restrictions

% of Remaining Remaining
Sample Dropped N Births

All births 7,820,852
No hospital identified 25.61% 5,818,140
No delivering physician identified 31.78% 3,969,107
Physician with < 100 births total 14.92% 3,377,037
Not nulliparous 80.25% 666,850
Not term, singleton and vertex 6.93% 620,631
Scheduled C-section 4.18% 594,675
Single observation per physician-year or physician-hospital 3.69% 572,752
Total 572,752

Notes: Table details the share of data dropped with each sample restriction and resulting sample size.
Data from Medicaid 2015-2019 T-MSIS (TAF) claims data. We use both the inpatient (IP) and other-
services (OT) claims files to identify births and associated variables. See Appendix B for details on
how we identify births, the delivering physician, and the hospital. Physicians are restricted to be either
OB/GYN, family practice or general practice, 98% of our sample was delivered by an OB/GYN.

3.2 Variation in C-section Use

Alongside the rise in C-section rates, prior research has documented substantial geographic

variation in C-section rates across the US (Baicker et al., 2006; Robinson et al., 2023), and

21Note that we underestimate nulliparity in our sample. If we do not impose the nulliparous restriction, all
results remain substantively the same, with more precision due to the increased sample size. We opt to use
nulliparous births for our main specification to be conservative, due to potential concerns of patient selection
into hospitals or physicians for higher-order births.

22Specifically, we require all births to have evidence of trial of labor following (Gregory et al., 2002). See
Appendix B for details.
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even within healthcare markets (Epstein and Nicholson, 2009). This is evident in our data on

Medicaid deliveries as well. Figure 2 shows the large variation in C-section rates by county

for births covered by Medicaid. The variation observed at the county level is generated by

both variation in C-section rate across hospitals and across physicians. We show distributions

of C-section rates across both of these provider types in Figure 3.

Figure 2: County-level C-section rate, Medicaid 2015-2019

Notes: Data is from all deliveries in Medicaid claims, 2015-2019. The map shows the C-section rate based on
the county where the birth occurred.

3.3 Predicting C-section Risk

Some share of the variation in C-section rates across hospitals and physicians reflects differences

in underlying patient risk. In our analysis, we aim to isolate the role of hospitals and physicians,

adjusting for differences in underlying patient risk across providers. As part of this, we control

for each patient’s predicted C-section risk, following established practice in the literature

(Currie and MacLeod, 2017; Robinson et al., 2023). We use a logistic model represented for

patient i as:

P(C-sectioni = 1) = F (βXi) (1)

We include 29 clinical indications for C-section delivery in Xi. These covariates are listed
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Figure 3: Distribution of C-section rates in Medicaid, 2015-2019

(a) Hospital C-section rates (b) Physician C-section rates

Notes: Sample includes all births where we can identify both a delivering physician and hospital. Physicians
with less than 100 total births, or without at least one birth of each delivery method (cesarean/vaginal)
are dropped from the sample. N hospitals = 3,084. Mean hospital C-section rate = 28.38% (std. dev.
20.05). Median hospital-level C-section rate 27.79%. N physicians = 15,243. Mean physician C-section
rate = 28.65% (std. dev. 14.98). Median physician-level C-section rate 28.93%.

in Table A1, with comparisons to previous literature. We draw on Gregory et al., 2002, Asch,

2009, Currie and MacLeod, 2017, and Robinson et al., 2023 to capture relevant comorbidities

used to identify C-section appropriateness.23

We estimate C-section appropriateness on the entire sample, comprising 7,820,852 deliver-

ies over 2015-2019. As such, the estimates will be insensitive to any one physician’s behavior.

Results are presented in Table A2. All clinical indications are statistically significant at least

at the 0.1% level. Estimates are clinically consistent in direction (e.g., C-section becomes

more likely with age) and size (e.g., the largest coefficients are on previous C-section, vertex,

and placenta previa).

We then use the estimated parameters from this model to provide an estimation of

C-section risk for each patient, which we denote ĥi. This measure can be thought of as a

measure of patient risk for C-section delivery, based on clinical observables. In Figure 4,

23Gregory et al., 2002 and Asch, 2009 provide guidance on identifying clinical indications from ICD codes,
which we follow given we are using claims data. Currie and MacLeod, 2017 and Robinson et al., 2023 use
birth record data. These vary in their level of detail; we have access to some variables unavailable in birth
records and can also occasionally use more granular codings, but analogously the birth records data on
occasion has access to information we struggle to code from claims.
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we plot the distribution of the C-section appropriateness score by delivery type.24 Vaginal

deliveries are generally well-targeted, with almost all patients having a predicted C-section

appropriateness below 0.5. C-sections, however, are much less accurately targeted. There is a

notable mass of C-sections at higher risk levels; however, there is also a mass among low-risk

patients. This is consistent with concerns about potential overuse of C-sections for low-risk

patients.

Figure 4: Distribution of C-section appropriateness by delivery method

Notes: The histogram plots the distribution of the C-section appropriateness score separately by delivery
type. Blue bars show the distribution for vaginal deliveries, white bars show the distribution for C-section
births. The appropriateness score is estimated from a simple logit model (Equation (1)). The covariates
included in the model, and their associations with C-section delivery, are reported in Table A2. Sample
size is N = 7, 820, 852 deliveries.

4. Estimating the Role of Hospitals and Physicians

In this section, we outline our decomposition of C-section rates. We adopt an AKM-style

model rooted in the labor economics literature (Abowd et al., 1999). Following applications
24This figure is a replication of Currie and MacLeod, 2017, using Medicaid claims data.
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in healthcare by Finkelstein et al., 2016 and Badinski et al., 2024 we use a fixed-effects model,

which exploits physician mobility over hospitals to separately estimate the role of physicians

and hospitals. This provides a macro perspective on the variation in C-section use in the

US, comparing the role of physicians and hospital environment in explaining cross-facility

variation in C-section usage.

4.1 Decision Framework for Unplanned C-sections

We begin by presenting a simple conceptual framework of C-section supply and demand,

similar to Finkelstein et al., 2016. The purpose is to clarify the determinants of delivery

mode, outline the underlying assumptions of our empirical approach, and generate testable

hypotheses.

On the demand-side, all pregnant patients i in labor will ultimately have either a vaginal

birth or deliver via C-section: ci ∈ {0, 1}. Patient i’s utility from a C-section is a function of

clinical appropriateness for a C-section, hi ∈ [0, 1], which can evolve rapidly during labor and

delivery. Higher values of hi represent a higher-risk patient for whom a C-section delivery is

more medically appropriate. Utility also depends on patient-specific preferences ηi. While all

patients in our sample plan for vaginal birth, ηi captures how willing a patient is to deviate

from the clinically appropriate delivery mode. This term also captures differences in patient

i’s agency or ability to express her preferences in the delivery room. This may be influenced

by access to information, language barriers, or the broader power dynamics in the delivery

room.

We can write patient i’s utility as ui(c|hi, ηi) = −1
2(c − hi)2 + ηic. Intuitively, the first

term is a loss function capturing deviations from clinical appropriateness, and the second

term captures patient taste. A C-section is preferred when u(c = 1) > u(c = 0), which

simplifies to hi + ηi > 1
2 . We assume that in expectation ηi = 0 such that for any given hi,

the average patient prefers whichever delivery mode is most clinically appropriate. Note that

we do not observe the true value of hi, and predict a patient’s clinical indication using clinical

consensus for C-section estimated in Equation (1).

On the supply-side, physician j practicing in hospital b in month-year t chooses delivery

method ci ∈ {0, 1} to maximize their perceived utility of patient i, ũjc, minus a hospital-
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specific cost of performing a C-section HCbt.

citb = arg max
c

ũj(c|hi, ηi) − HCbt(c) (2)

where the difference between a patient’s utility for a C-section and the physician’s perception

of their utility captures the physician’s underlying propensity to perform a C-section, which

we refer to as C-section intensity and denote γj . A physician’s C-section intensity is shaped by

heterogeneous preferences for C-sections, which reflect a physician’s assessment of the benefits

of C-section versus vaginal delivery. This may be influenced by a physician’s preferences,

surgical skill, or clinical experience. For example, a more skilled surgeon may perceive the

risks of surgical complications as lower and prefer to do more C-sections, all else equal (Currie

and MacLeod, 2017). We assume that ũj(c|hi, ηi) = ui(c|hi, ηi) + γjc, so that higher values of

γj reflect higher C-section “intensity” physicians.

The hospital-specific cost HCbt(c) = c(γb + γt). We use the term “hospital environment”

to capture all non-physician supply-side factors that vary at the hospital level and influence

delivery decisions, which is represented by γb in our model. Many hospital-specific factors,

including capacity constraints, malpractice environment, ownership status, the presence of

midwives, and state-level initiatives, have all been shown to influence a hospital’s C-section

rate (AHRQ, 2015; Baicker et al., 2006; Corredor-Waldron et al., 2024; Currie and MacLeod,

2008; Miller et al., 2025). The decision to perform a C-section may also depend on a time

trend γt, which captures seasonality, changes to clinical guidelines, and/or time trends in

births that affect all hospitals. Physician j chooses ci(tb) ∈ {0, 1} to maximize Equation (2).

This yields that c∗
i(jb) = 1 if hi + ηi + γj + γb + γt > 1

2 . In the next section, we take this model

to the data and decompose average C-section rates into components driven by patient risk,

physician C-section intensity, and hospital practice environment.

This model generates several testable hypotheses. First, all else equal, physicians with

higher γj will perform more C-sections. If we assume that higher-skilled or more experienced

surgeons have lower perceived costs of performing a C-section, we would expect γj to be

higher for physicians with more years of experience (Currie and MacLeod, 2017). Second,

physician C-section intensity (γj) will have a stronger impact on delivery method for patients
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with hi ≈ 0.5. For patients with very-high or very-low clinical appropriateness for a C-section,

heterogeneity in physician practice style will not influence outcomes as much. Further, among

patients with hi ≈ 0.5, those without strong preferences (i.e., small |ηi|) will be more impacted

by physician C-section intensity γj . Note that in this model, small absolute values of ηi could

reflect patients who are truly indifferent between delivery types, or patients who are unable

to express their preferences in the delivery room. We would expect patient groups with lower

agency to have smaller |ηi|, and thus be more impacted by physician type.

4.2 Empirical Specification

Maximizing Equation (2) gives us our estimating equation for patient i delivering in month-

year t with physician j at hospital b:

cijbt = γj + γb + γt + βhi + εijbt (3)

where cijbt is an indicator equal to one if patient i received a C-section. We include fixed

effects for physician (γj) and hospital (γb), our main parameters of interest, and include

month-year (γt) to control for seasonality in births. Finally, we control for the decile of

patient i’s C-section risk (hi), described in Section 3.3. As outlined above, in our benchmark

specification, we restrict our estimation to nulliparous and low-risk (NTSV) pregnancies

without scheduled C-sections. We also require that every physician-hospital pair has at least

five deliveries, and hospitals must have at least one moving physician; we do not include any

hospitals where all physicians practice only at that hospital throughout our sample. Finally,

we create an adjacency matrix representing the network of hospitals, connected via mobile

physicians, and take the largest component that is fully connected.

We use an additive decomposition to estimate the relative contribution of physicians vs.

the hospital environment. Let c̄b denote the average low-risk (NTSV) unplanned C-section

rate at hospital b. As in Equation (3), this average C-section rate is determined by patient

health characteristics, the physicians performing deliveries, seasonality in births, and the

hospital environment. Thus, the difference in average C-section rates across two hospitals b
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and b′ can be decomposed as follows:

c̄b − c̄b′ = (γ̄j(b) − γ̄j(b′))︸ ︷︷ ︸
Physician component

+ (γb − γb′)︸ ︷︷ ︸
Hospital component

+ β(h̄i(b) − h̄i(b′))︸ ︷︷ ︸
Patient risk component

(4)

where the average physician fixed effect at hospital b, across all deliveries, is denoted γ̄j(b)

and the average patient C-section risk at hospital b across all deliveries is denoted βh̄i(b). The

sample analogue of each component comes from our estimation of Equation (3); if this is

consistently estimated, it follows that the means and differences will be as well (Finkelstein

et al., 2016). We can use each term above, over the difference in the hospitals’ raw C-section

rates, to calculate the contribution of each component to the difference in C-section rate.

In practice, we calculate the difference between groups of hospitals (denoted B), which we

stratify based on their unscheduled C-section rate for low-risk (NTSV) deliveries.

We also calculate the variance and correlation of the physician and hospital components

to investigate physician sorting over hospitals based on practice style. Correlated sampling

error in the physician and hospital components will lead to negative bias in the estimated

correlation (Andrews et al., 2008; Card et al., 2013). To correct for this, we follow Finkelstein

et al., 2016 and use a split sample approach. We randomly split physicians into two samples.25

We then estimate the hospital (γ̂b) and physician (γ̂j) fixed effects in each sample. To calculate

the variance of γ̂b (or γ̂j), we find the covariance between the estimates in each subsample.

The correlation between γ̂b and γ̂j is calculated as the average of the covariance between γ̂b

from one subsample and γ̂j, divided by the estimated standard deviation of γ̂b and γ̂j.26

4.3 Identification via Physician Mobility

Our estimated fixed effects for physicians and hospitals are identified by physician mobility

across hospitals, which allows us to separate the relative contribution of the two. In effect,

within-physician differences in risk-adjusted C-section rate between hospitals identify the

relative contribution of the hospital and the physician. Consider a simplified example,

25Non-movers are randomly split within hospital. Physician movers and multi-homers are randomized
within hospital pairs (the two hospitals with the most observed deliveries).

26Denoting the samples 0 and 1, the formula is: ρ(γ̂b, γ̂j(b)) = cov(γ̂b,0,γ̂j,0)+cov(γ̂b,1,γ̂j,1)
2 × 1√

var(γ̂j)
√

var(γ̂b)

20



abstracted from patient risk and time factors. There are three physicians, A, B, and C, and

two hospitals, 1 and 2. Physicians A and B each practice at both Hospital 1 and Hospital

2, while Physician C practices only at Hospital 1. Because Physicians A and B practice at

Hospitals 1 and 2, the difference in their C-section rates between the two hospitals reveals

each hospital’s relative influence. The estimated fixed effect for Hospital 1 is identified from

Physicians A and B moving across hospitals. This allows us to back out the fixed effect for

Physician C, even though she does not move hospitals.

In obstetrics, physician mobility comes in two primary forms. First, physicians may

hold admitting privileges and treat patients at more than one hospital within the same area

and time period. This is a practice we refer to as multi-homing, following Mourot, 2024.

In our conversations with obstetricians, this was cited as a common practice; affiliations

with multiple hospitals can help attract additional patients to physicians’ outpatient clinics.

Second, physicians may relocate their practice entirely from one hospital to another. We

define “traditional movers” as physicians who change hospital exactly once in our six-year

sample period, and who are the attending for at least two births at each hospital.27

In Table 4, we categorize the physicians in our sample based on their mobility. We observe

58% of physicians deliver a patient at more than one hospital during the sample period, but

only 3% meet our strict criteria to be considered a “traditional mover”.28

4.4 Investigating Assumptions

The key assumption behind this model is the exogenous network assumption, common to

the classical AKM literature. This requires that the assignment of patients to hospitals and

physicians is exogenous conditional on patient risk hi and the included fixed effects: hospital

type γb, physician type γj, and time γt. Let Dijbt = 1 denote assignment of patient i to

27Further, we require that these physicians move in a year other than the first or final year of our sample,
such that we have at least one full year in each location to observe them. Each physician mover therefore has
two “shifts”, identified from the date of the first delivery to the date of the last delivery at each hospital. We
allow such shifts to overlap by one month, given physicians who move hospitals within a reasonable radius
may perform a “warm hand-off” and continue to treat patients nearing the end of their pregnancy.

28To contextualize our sample, Mourot, 2024 finds that 40% of cardiologists are observed at multiple
hospitals, and Molitor, 2018 estimates that approximately 15.5% of cardiologists in Medicaid move HRRs
between 1998-2010. Note that we both have a more restrictive definition of mover compared to Molitor and a
much shorter time window
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Table 4: Types of physician mobility

Physician Mobility Type N Physicians (%) All Deliveries (%) NTSV Deliveries (%)
One Practice Location 5,498 (41.45%) 1,213,278 (35.87%) 203,548 (35.54%)
Multiple Practice Locations 7,765 (58.55%) 2,169,509 (64.13%) 369,204 (64.46%)

Traditional Movers 404 (3.05%) 94,992 (2.81%) 16,711 (2.92%)
Total 13,263 3,382,787 572,752

Notes: Table outlines the number and percent of physicians and deliveries by physician mobility type.
We define a “traditional mover" as a physician with exactly two practice locations, with at least 2 NTSV
deliveries in each hospital, and with an overlap between hospitals of no more than one month. We drop
any moves occurring in 2015 or 2019. NTSV sample includes patients who are nulliparous with singleton,
term, vertex pregnancies, and who attempted vaginal delivery.

physician j in hospital b in month-year t.

E[εijbt|Dijbt, hi, γj, γb, γt] = 0

Under this assumption, the assignment of patients to physicians and hospitals, Dijbt, can

depend on patient observable risk hi as well as physician, hospital, and time heterogeneity in

C-section intensity. We separate selection concerns into two types: i) physician sorting across

hospitals and ii) patient sorting into hospitals or physicians.

Physician sorting across hospitals would violate the exogenous networks assumption only

if the moves are associated with unobservable shocks to practice style that influence their

C-section rate. For physician movers who have one clean relocation, we report an event-study

specification in Section 5.1 and find no pre-trends in practice style prior to a move, suggesting

physicians are not relocating based on preferences over C-section intensity. The majority of

our variation, however, is driven by multi-homers, who deliver at multiple hospitals within

the same time period. Hospital affiliation is driven by group clinic, and it is reasonable to

assume that there are no changes in underlying physician preferences for C-section delivery

that would coincide with their inpatient shift schedule across hospitals.

If there are match-effects, µjb between some physician-hospital pairs, such that physician

j is uniquely more (or less) likely to perform a C-section at hospital b, these will be absorbed

in the error term εijbt. Match effects could include local protocols, team fit, or equipment

that interact with physician j’s practice style. The existence of match effects is not a problem
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in itself, but we require that the realized assignment of patient i to physician j and hospital

b to be exogenous to physician-hospital match effects µjb. In other words, physician j having

idiosyncratic match effects at hospital b is only a threat to identification if the match effect

is driving the location decision of the physician or correlated with unobservable patient

risk. For traditional movers, this would be violated if physicians systematically move to

destinations with higher match effects. For multi-homers, this would be violated if physicians

could systematically route certain patients to hospitals where they personally have a positive

match effect. In our setting, the decision to deliver at hospital b is driven by patients, not

physicians. All patients in our sample are relatively low-risk, are attempting a vaginal birth,

and we control for ex-ante risk of C-section. Further, the delivering physician is typically

not the primary prenatal care provider, and would have no reason or ability to influence the

delivery location of the patients they deliver.29

A second type of selection concern would be patients sorting into hospitals or physicians.

The exogenous networks assumption requires that the probability of patient i delivering

at hospital b with physician j, conditional on hi, does not depend on unobservable patient

characteristics that influence the probability of C-section delivery. If some physicians are

differentially more likely to treat high-risk patients, then the physician fixed effect would pick

up differences in patient sorting across providers. In restricting our sample to unplanned

C-sections among low-risk patients, we exploit spontaneity in the procedure (via the onset of

labor), combined with rotational variation in on-call physicians, which generates quasi-random

patient-physician matching within the hospital. We assess this assumption in Section 6.3.

In our setting, it would also be a problem if patients select into hospitals based on

unobservables that are correlated with the probability of C-section delivery. We condition

on the predicted risk of C-section, a measure based on detailed health history. Still, we

cannot rule out that unobservable preferences for C-sections may be driving selection. For

example, a patient with strong preferences for vaginal birth may select into hospitals with

lower C-section rates. In this case, a portion of the hospital environment term will capture

unobserved differences in patients.

29Note that for high-risk patients, or patients with scheduled C-sections, this assumption is less likely to
hold. However, for our analysis, we focus on low-risk patients attempting vaginal birth.
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If physician j has an equal practice share across hospitals, the mis-measurement in patient

risk will be attributed entirely to the hospital fixed effects, and the physician component

γj will be unbiased on average. However, if the exposure to hospitals is unbalanced, then

the physician fixed effect will start to “inherit” whichever hospital’s bias dominates her case

load. To address this concern, we report robustness to a sample of physician movers and

multi-homers who practice more balanced caseloads across hospitals over the sample period.

This restriction strengthens the credibility of our physician effect estimates by limiting the

influence of unbalanced exposure to biased hospital effects.

Additionally, in Section 5.1 we focus only on the small share of physicians with exactly one

clean move over hospitals. By following the same physician across hospitals, we hold constant

the physician fixed effect and attribute changes in practice style to differences in hospital

effects. Because identification of physician effects relies on within-hospital quasi-random

assignment of patients to on-call physicians, any between-hospital differences in unobservable

patient composition will bias the hospital fixed effects rather than the estimated physician

contribution to C-section use.

Finally, our model assumes that hospital and physician effects are time invariant, within

the sample period studied. As we cover a five-year period, a relatively short time period in a

physician’s career and a hospital’s tenure, we do not believe this presents a major concern.

Our event study on physician moves also suggests that there are no substantial year-on-year

changes in practice, for example, via learning or peer effects.

5. Results: Role of Hospitals and Physicians

We begin with an additive decomposition of the relative contribution of physicians and

hospitals, comparing several sets of hospitals based on their raw C-section rates in Table 5.

In the first three rows of each table, we compare the difference in average low-risk (NTSV)

unplanned C-section rates between hospitals in higher vs. lower quantiles. The first row

shows the overall difference in C-section rate. The second and third rows report differences

in average hospital and physician fixed effects, respectively. We use the latter to estimate the

share of difference in C-section rates explained by differences in hospitals and differences in
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physicians, which we show in the final two rows.

Table 5: Additive decomposition of cross-hospital C-section rates, NTSV births

Estimator Top vs. Bottom
50% 25% 10% 5%

∆ in C-section Rate...
... Overall ĉB − ĉB′ 0.117 0.192 0.287 0.351
... Due to hospitals γ̂B − γ̂B′ 0.076 0.122 0.178 0.212
... Due to physicians γ̂j(B) − γ̂j(B′) 0.033 0.058 0.094 0.117
Share of ∆ due to...
... Hospitals γ̂B−γ̂B′

ĉB−ĉB′
0.649∗∗∗ 0.637∗∗∗ 0.621∗∗∗ 0.603∗∗∗

(0.097) (0.097) (0.097) (0.102)
... Physicians γ̂j(B)−γ̂j′(B)

ĉB−ĉB′
0.285∗∗ 0.303∗∗ 0.327∗∗∗ 0.334∗∗∗

(0.097) (0.098) (0.097) (0.103)
N hospitals 1,245 624 251 132
N physician-hospital pairs 12,467 5,101 1,612 718
N deliveries 481,237 190,782 53,660 20,424

Notes: Reports results from Equation (4). Restricted to the largest set of connected hospitals. Quantiles
(denoted B and B′) are determined by a hospital’s raw NTSV unscheduled C-section rate over the sample
period. First row reports the difference in average C-section rate between hospitals in group B vs B′.
The second row reports the difference in average hospital fixed effects among hospitals in group B vs B′.
The third row reports the difference in average physician fixed effect among hospitals in group B vs B′.
Standard errors (in parentheses) are calculated by bootstrap with 100 repetitions. Births are restricted
to nulliparous, term, singleton, and vertex (NTSV) without a scheduled C-section. C-section rates at
each percentile are: 5th = 8.00%, 10th = 10.71% , 25th = 15.09% , 50th = 19.49% , 75th = 23.88% , 90th

= 29.03% , 95th = 33.33%. * indicates p < 0.10, ** for p < 0.05, and *** for p < 0.01.

We first compare hospitals with above versus below median C-section rates, where the

median hospital-level unplanned C-section rate for NTSV patients is 19.49%. The difference

in average C-section rate between these two groups is approximately 12 percentage points.

We find that approximately 65% of this difference is due to hospital-level variation, and 29%

is due to physician-level variation. As we compare more extreme quantiles (such as the top

and bottom quartiles, or top and bottom 5%), we find a similar share of variation explained

by the hospitals and physicians. However, the physician share increases in importance at the

most extreme quantiles.

In Table 6, we present the variance in, and correlation between, the physician and hospital

fixed effects. There is a negative but insignificant correlation between physician and hospital

components, suggesting minimal sorting on preferences for performing C-sections. This is
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consistent with our event study on physician movers, which shows no pre-trends in physician

C-section practice style prior to moving to a hospital with a different C-section intensity.

Table 6: Variance decomposition of cross-hospital C-section rates, NTSV births

Estimator Estimate
Cross-hospital variance of average...
... C-section rate V ar(ĉb) 0.0063
... Hospital effects V ar(γ̂b) 0.0007
... Physician effects V ar(γ̂j(b)) 0.0035
Correlation of hospital ρ(γ̂b, γ̂j(b)) -0.083

+ physician effects (0.093)
N Hospitals 1,067

Notes: Estimates are based on Equation (3). Standard errors calculated using bootstrap with 100
repetitions. A split-sample approach is used to address correlated sampling error when calculating the
variance. Births are restricted to nulliparous, term, singleton, and vertex (NTSV). Hospitals are restricted
to a connected set. The average hospital C-section rate is 20%. Note that the number of hospitals is
lower than in Table 5, this is because our split-sample approach requires more than one physician mover
or multi-homer within each pair of hospitals.

In sum, we find that while the largest contributor to a hospital’s C-section rate is the

hospital environment, the contribution of physician variation is substantial, explaining between

one quarter and one third of the observed gaps. In comparison to existing estimates from

cardiologists in Medicare, physicians in our sample of Medicaid deliveries play a significantly

larger role.30 C-sections present an interesting comparison. Similar to primary care, physicians

can exercise substantial influence over the diagnosis, albeit in an emergent setting. But a

C-section is a major surgery (a capital intensive process) more similar to cardiology in many

ways. We find that the physician influence over cross-hospital differences is similar to primary

care for hospitals, but hospital contribution is similar to the case in cardiology (Badinski

et al., 2024). This fits with a story where hospitals with noticeable constraints—either in

staffing or capital for surgery—might exercise a strong influence over treatment choices,

alongside physicians’ diagnostic ability and surgical preferences. Physicians and hospitals

jointly explain the majority of differences across institutions, with less than 10% of the

30Molitor, 2018 studies how cardiologists’ catheterization rate evolves after a move to a different HRR, and
finds an adjustment of around 80% for a hospital move, suggesting factors specific to the clinical environment
play a larger role. Similarly, Badinski et al., 2024 finds that cardiologists’ practice style accounts for only 3%
of differences in treatment intensity across HRR, compared to 19% for primary care utilization in Medicare.
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across-hospital variation in C-section explained by differences in patient health risk (hi). This

is consistent with prior estimates of the role of supply-side healthcare provision (Fischer

et al., 2023). The finding that patient risk contributes much less to observed differences in

utilization compared with estimates from the Medicare population makes sense given the

relatively healthy population in obstetrics and our focus on low-risk births. Additionally,

there is essentially no role of patient selection into treatment, given the near universality of

hospital delivery, further limiting the role of the demand side in this context.

5.1 Illustrative Event Study

In our main additive decomposition approach, the identifying variation comes from physician

mobility, including both multi-homing, in which physicians practice at more than one hospital

during a time period, and physician movers relocating their practice from one hospital to

another. Here we present results focusing only on the latter—physician movers—and estimate

how physician practice style changes following a move. Assuming no other changes that

impact physician C-section use are correlated with the timing of the move, any shift in

C-section use following a move can be attributed to the change in practice environment. This

approach allows us to check for pre-trends in physician practice style, to better understand

if mobility is related to physicians’ selecting into environments based on their C-section

intensity.

To measure the change in the practice environment of each physician following a hospital

move, we define the hospital C-section intensity as the hospital’s raw C-section rate minus

the predicted C-section rate among its patients (based on clinical indications). This latter

term is the mean risk score from our logistic model, Equation (1). For hospital b in year t

with Nbt patients, we measure a hospital’s C-section intensity as:

C-section Intensitybt =
∑Nbt

i 1(C-sectioni)
Nbt

−
∑Nbt

i ĥi

Nbt

(5)

This measure can be thought of as the hospital-level deviation in C-section use from clinical

consensus. In our analysis, we aggregate this measure across the years in our sample, such

that we have a time-invariant C-section intensity per hospital. We compute a weighted
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average per hospital over all years, where weights are the number of patients that hospital

sees in a given year. We measure the hospital risk-adjusted C-section intensity using all

deliveries at that hospital in our sample.

For physician movers, we define a change in physician j’s practice environment b as:

∆b,j = (Destination hospital C-section intensity)j

− (Origin hospital C-section intensity)j

(6)

To avoid a physician’s own C-section intensity directly impacting on the hospital C-section

rate, we leave out physician j’s patients when calculating the hospital-level risk-adjusted

average ∆b,j. Figure 5 shows the distribution of hospital C-section intensity along with the

distribution of ∆b,j for all movers in our sample.

We then estimate the following event study:

C-sectionijt =
∑

s

[αt1(s = t) + βt∆b,j1(s = t)] + γj + γmt + ϕhi + εijt (7)

Where C-sectionijt is an indicator for whether patient i delivered by physician j in year t

received a C-section. We measure the change in the physician’s environment (hospital) as

∆b,j , and our key parameters of interest are the coefficients on this variable interacted with a

full set of time dummies 1(s = t), where t indicates a year. We include physician fixed effects

γj, as well as standalone event time dummies. Finally, we include fixed effects for calendar

month and year (γmt) to control for changes in the C-section rate over time and predicted

patient C-section risk (hi) to control for observable characteristics related to appropriateness

for C-section, but uncorrelated with regional treatment intensity. We estimate two-way

clustered standard errors over the physician and hospital (of the observed delivery).

With the inclusion of physician fixed effects, our estimates can be interpreted as the

change in physician behavior after the move, relative to behavior in a baseline period. We

use the year prior to the move (t = −1) as the omitted base category, such that βt = −1

is mechanically zero. The point estimates βt prior to the move (t < −1) reflect differences

in C-section intensity of movers relative to the change in C-section intensity of hospital

environment ∆t in the year of the move. If a physician’s decision to move hospital is unrelated
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Figure 5: Distribution of hospital C-section intensity for physician movers

(a) Time-invariant hospital C-section intensity

(b) Change in hospital C-section intensity, movers

Notes: Panel (a) shows the distribution of the time-invariant hospital-level C-section intensity (raw C-section
rate minus predicted C-section rate) for all hospitals in our sample. Panel (b) shows the change in C-section
intensity ∆b,j between origin and destination hospitals for all physician movers. Red lines indicate zero. N
movers = 404.
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to the C-section intensity of the origin and destination hospital, we would expect βt = 0 for

all time periods before the move.

After the move, βt estimates the change in a physician’s C-section rate relative to

the change in C-section intensity of their environment. Values βt>0 = 0 would suggest

physician risk-adjusted C-section rate is fixed and does not respond to changes in the hospital

environment. Values βt>0 = 1 would suggest that a physician’s C-section intensity is fully

determined by the hospital in which they practice. Before the move, βt estimates whether

the physician’s C-section intensity preemptively changes, suggesting selection into hospital

location.

Results are displayed in Figure 6. There is an immediate jump in the physician’s

propensity to deliver via C-section after a move, with βt=0 = 0.575 . This suggests that

approximately 60% of the difference in risk-adjusted C-section rates across hospitals is driven

by differences in hospital environment, and the remaining share is explained by physician

practices. It is reassuring that these estimates are in line with our additive decomposition

exercise. However, given the small sample size, our standard errors are large and we cannot

rule out hospital contributions between 20% - 100%. An F -test for joint significance of the

pre-period interactions has a value of F = 0.873 with a p-value of 0.419 , presenting no

evidence of a pre-trend in the physician’s C-section use (though the pre-period is short).

In Figure 7, we plot each physician’s C-section intensity, as measured by the residuals

in our within-hospital regression, by their mover status. For physician-movers, we compute

their pre-move C-section intensity; for non-movers, we compute their C-section intensity

over the entire sample period. The distributions are very similar, suggesting mobility is not

associated with physicians’ C-section intensity. In Table 7, we compare characteristics of

“stayers”, multi-homers, and traditional movers.

For movers, the most notable difference is they tend to be younger and significantly more

likely to be female. This is consistent with mobility being determined perhaps by personal

factors (for example, co-location with a partner, or a move to a home state) and finding

a long-term location from which to set up a practice. Their share of deliveries that are

C-sections, and their C-section intensities, are not significantly different.
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Figure 6: Response of physician C-section rate to change in hospital excess C-section rate

Notes: Figure shows coefficient estimates from a regression of C-section delivery on the change in
clinical environment, as measured by the percentage point change in hospital C-section differential, see
Equation (7). Time period zero is the first year of a move. We drop all moves occurring in 2015 or 2019.
Identification comes from N = 404 with 16,313 deliveries. A coefficient of βt≥0 = 0 would suggest no
impact of a change in hospital environment (hospital C-section intensity) on a physician’s C-section rate.
A coefficient of βt≥0 = 1 would suggest physicians fully adapt to the destination hospital’s C-section
intensity following a mover. We find βt=0 = 0.575.
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Table 7: Physician characteristics by mobility type

One practice Multiple practice Traditional Difference: Difference:
location locations movers (1) - (2) (1) - (3)

(1) (2) (3)
Age 47.29 46.64 41.46 0.65*** 5.83***

(9.71) (9.65) (8.50) (0.22) (0.54)
Female 0.55 0.53 0.69 0.02** -0.14***

(0.50) (0.50) (0.46) (0.01) (0.02)
Years of experience 15.09 13.96 8.87 1.13*** 6.22***

(9.81) (9.58) (7.87) (0.22) (0.51)
OB/GYN 0.94 0.97 0.98 -0.03*** -0.04***

(0.24) (0.17) (0.16) (0.00) (0.01)
MFM specialist 0.03 0.03 0.03 0.00 0.00

(0.18) (0.16) (0.16) (0.00) (0.01)
Annual Medicaid births 34.36 41.44 30.52 -7.08*** 3.84***

(26.23) (34.67) (20.44) (0.53) (1.08)
% Births nulliparous 0.17 0.18 0.20 -0.01*** -0.04***
with trial of labor (0.09) (0.08) (0.09) (0.00) (0.00)
Overall C-section rate 0.29 0.30 0.30 -0.01*** -0.01

(0.15) (0.11) (0.12) (0.00) (0.01)
C-Section intensity -0.00 0.00 0.01 -0.00** -0.01*

(0.09) (0.09) (0.10) (0.00) (0.01)
% Patients Black 0.17 0.18 0.17 -0.00 -0.00

(0.20) (0.17) (0.18) (0.00) (0.01)
% Patients White 0.38 0.32 0.36 0.06*** 0.01

(0.27) (0.24) (0.26) (0.00) (0.01)
% Patients Hispanic 0.21 0.27 0.24 -0.05*** -0.03**

(0.24) (0.26) (0.24) (0.00) (0.01)
N 5,498 7,765 404 13,263 5,902

Notes: Table outlines the sample characteristics and differences between physicians based on mobility. Column
(1) reports sample means for physicians with all deliveries in one hospital (standard deviations are reported
below each mean). Column (2) reports sample means for all physicians with births in multiple hospitals
(includes both traditional movers and “multihomers”). Column (3) reports sample means for “traditional
movers”: physicians with exactly one move observed between 2016-2018. Note that the sample in column
(3) is a subset of the sample in column (2). Movers must be observed at only two hospitals in the sample
and overlap by no more than 30 days. Differences comparing the sample means of physicians with one
practice location vs. those with more than one practice location are reported in column (4). The final column
compares physicians with one practice location to traditional movers. * indicates p < 0.10, ** for p < 0.05,
and *** for p < 0.01.
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Figure 7: Distribution of hospital C-section intensity by mover status

Notes: Histogram shows the distribution of C-section intensity by physician mover status. C-section
intensity measured across all NTSV patients with spontaneous delivery, as detailed in Equation (9). N

movers = 404.

6. Estimating Health Effects of Physician Practice Style

Relative to other medical fields, the contribution of physician practice style to cross-facility

variation in C-section rates is substantial. Moreover, the lack of sorting suggests meaningful

variation in physician practice style within hospital. We examine the consequences of this

more closely using a so-called “judge leniency design” following Dahl et al., 2014; Dobbie et al.,

2018; Eichmeyer and Zhang, 2022, among others. We leverage quasi-random assignment

of low-risk nulliparous patients to on-call physicians due to the spontaneous onset of labor

combined with rotational variation in physicians’ hospital shifts. We are then able to estimate

the causal effect of physician C-section intensity on delivery method and estimate the implied

causal effect of a marginal C-section on health outcomes.
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6.1 Defining Physician C-section Intensity

We construct a measure of each physician’s C-section intensity, leaving out a patient’s own

delivery method. To do so, we estimate the following regression:

C-sectionijbdt = α + γbt + γbd + β′Xi + εijbdt (8)

where C-sectionijbt is an indicator equal to one if patient i, seen by physician j at hospital b

in month-year t on day-of-week d, is delivered via C-section. This is regressed on hospital-

month-year and hospital-day of week fixed effects, which reflect the assignment mechanism of

patients to physicians, and flexibly control for seasonality in births, differences in hospital

staffing throughout the week, hospital-specific policies (e.g., regarding VBAC) or facilities

(e.g. number of operating rooms). All nulliparous deliveries, excluding scheduled C-sections,

are used to estimate Equation (8).31 We control for salient patient observables (Xi) which

may impact physician assignment, including term, vertex, singleton, induction, preeclampsia,

eclampsia, advanced maternal age, obesity, diabetes, macrosomia (large baby), and an

indicator for if the patient ever saw the delivering physician for prenatal care.32

Under our assumptions regarding quasi-random patient-physician assignment on the ward,

the individual physician’s contribution to the C-section decision is in the error term, εijbdt.

We then estimate the C-section intensity measure for a patient i seen by physician j in

month-year t as the leave-one-out average of the residuals from Equation (8):

C-section Intensityi,jt = 1
N−i,jt

∑
i′∈J\i

ε̂i′ (9)

Where ε̂i′ is the residual from Equation (8), J denotes the set of all deliveries performed by

physician j within a year prior to t and a year after t, and N−i,jt = |J\i| is the count of those

deliveries excluding patient i’s delivery. This C-section intensity measure is interpreted as

the average C-section rate of patient i’s physician j, relative to other physicians delivering
31Note that the share of nulliparous patients who are not also term, singleton, and vertex is very low

(≈5%). Thus, whether we include these deliveries in the C-section intensity construction does not make a
meaningful difference.

32Results are not sensitive to the choice of controls included in Xi, alternative specifications available
upon request.
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at the same hospital within the same two-year period. Leaving out patient i’s delivery type

prevents any mechanical bias in the physician’s estimated C-section intensity from using

patient i’s own delivery type (the outcome of interest) in its calculation.

We estimate the first-stage effect on a patient of seeing a physician with a higher C-section

intensity. For patient i, seeing physician j at hospital b in month-year t, and day-of-week d.

C-sectionijbdt = α + βC-section Intensityi,jt + γbt + γbd + βXi + eijbdt (10)

C-sectionijbt is an indicator equal to one if patient i received a C-section, which is regressed

on physician j’s leave-one-out C-section intensity measure for year t. We include fixed effects

for interacted hospital-month-year (γbt) and hospital-day-of-week (γbd). Equation (10) is

estimated on our main low-risk NTSV sample, thus term, singleton, and vertex are no longer

included in Xi as controls. Xi includes indicators for induction, advanced maternal age,

preeclampsia, eclampsia, macrosomia, obesity, and an indicator for whether patient i ever

saw physician j for prenatal care. Standard errors are clustered at the physician level.

Figure 8 shows the relationship between C-section intensity and delivery method. On the

x-axis we show the leave-one-out C-section intensity at the physician level. The histogram

shows the distribution of this measure of physician practice style across deliveries, plotted

with the left-hand y-axis. On the right-hand y-axis we plot a local-linear regression of the

fitted probability of receiving a C-section on physician C-section intensity, after residualizing

for the included fixed effects and patient characteristics. The graph shows the probability of

a C-section rises steadily as a physician’s C-section intensity increases, even after controlling

for patient characteristics and the assignment mechanism of patients to physicians.

Table A7 presents estimates of the first-stage effect of a physician’s C-section intensity on

C-section delivery, within a hospital. If a patient is assigned a physician with a 10 percentage

point higher C-section intensity (approximately one standard deviation), the likelihood of

receiving a C-section increases by roughly 2.11 percentage points, off a base rate of 20.14%.

For context, 10 percentage point change in C-section intensity roughly corresponds to the
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Figure 8: Distribution of physician C-section intensity, and effect on probability of C-section

Notes: Histogram shows the distribution of the C-section intensity instrument on the x-axis against the
percent of the sample on the left-hand y-axis. On the right-hand y-axis we plot a local linear regression
of β from our first stage regression, Equation (10). An observation is a patient-physician pair associated
with a delivery, where C-section intensity is a physician-level two-year average, leaving out patient i’s own
delivery outcome. N = 571,446. F-stat = 1391. Graph is truncated at ±0.25. We find β = 0.211 (standard
error 0.013), implying that being quasi-randomly assigned to a 10 percentage point more “C-section
intense” physician increases the probability of C-section by 2.11 percentage points. A 10 percentage
point increase in C-section intensity is roughly one standard deviation, or the difference between the 75th
percentile and 25th percentile of the C-section intensity distribution. The base rate of C-section in this
sample is 20.14%.
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effect of moving from a physician in the 25th percentile to a physician in the 75th percentile.33

The impact of moving from a 10th percentile physician to a 90th percentile physician is a

4.34 percentage point (≈ 21%) increase in the probability of C-section delivery.

This is a sizable effect relative to other interventions, which we outline in greater detail in

Table A6. For example, a Cochrane review of midwife care suggests this can reduce C-section

rates by around one percentage point (Sandall et al., 2024), and a meta-analysis of doula

support suggested a reduction of 3.7 percentage points (Bohren et al., 2017). The effect

of being a physician mother (and therefore reducing the information asymmetry between

physician and patient) is 2.14 percentage point reduction (Johnson and Rehavi, 2016).

6.2 Empirical Framework

Reduced-form estimation: To estimate the effect of being assigned a higher C-section intensity

physician on maternal and infant health outcomes, we use the following equation:

Yijbdt = θ0 + θ1C-section Intensityi,jt + θ2Xi + γbt + γbd + νijbdt (11)

where Yijbdt is an indicator for delivery complication or postpartum health outcome for

patient i. All regressions include the same baseline controls as in the first stage for salient

patient health observables Xi (induction, preeclampsia or eclampsia, advanced maternal

age, macrosomia, obesity, diabetes, and an indicator for if patient i had prenatal visit with

delivering physician j) and fixed-effects for hospital-month-year γbt and hospital-day of week

γbd. Standard errors are clustered at the physician level.

Instrumental variables (IV) estimation: To estimate the health effects of the marginal

C-section, we use C-section intensity of the delivering physician as an instrument for C-section

delivery. We use the following 2SLS equations:

Yijbdt = β0 + β1C-sectionijbdt + β2Xi + γbt + γbd + εijbdt (12)

33We estimate the effect of moving a 25th to 75th percentile physician by scaling the coefficient β by the
difference in C-section intensity between these percentiles of the C-section intensity distribution. The exact
impact of moving from a 25th percentile physician to a 75th percentile physician is a 2.04 percentage point
increase in probability of C-section.
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C-sectionijbdt = δ0 + δ1C-section Intensityi,jt + δ2Xi + γbt + γbd + νijbdt (13)

The causal effect of C-section delivery on health outcomes is typically difficult to estimate

due to endogeneity: delivery method is highly correlated with observable, and unobservable,

patient characteristics. If our identifying assumptions, discussed in Section 6.3, hold then

using C-section intensity of quasi-randomly assigned physician as an instrument for C-section

delivery provides causal estimates of the health consequences of the marginal C-section.

6.3 Identifying Assumptions

If physicians are quasi-randomly assigned to patients within hospitals, conditional on month-

year, day of week, and patient observables Xi, then our reduced-form Equation (11) estimates

the causal effect of physician C-section intensity on health outcomes. Violations of the

randomness in our assignment mechanism might occur if some physicians are systematically

more likely to be assigned to patients with higher ex-ante risk of C-section within a shift. We

test this with the following specification:

C-section Intensityijbdt = π0 + π1Pi + π2Xi + γbt + γbd + eijbdt (14)

where γbt denote hospital-month-year fixed effects, γbd denote hospital-day-of-week fixed

effects and Xi denote controls for the same salient patient characteristics used in constructing

the instrument. If there is minimal selection or matching of patients to physicians based on

the physician’s C-section intensity, Pi should not be predictive of C-section intensity and

π1 should be zero. We plot these coefficients in Figure 9. The left hand side shows patient

characteristics Pi are strongly jointly predictive of delivering via C-section (F = statistic

294.908), but poor predictors of the delivering provider’s C-section intensity (F statistic =

2.527). This is consistent with our assumption that low-risk patients attempting a vaginal

birth are quasi-randomly assigned to an on-call physician.

For physician C-section intensity to serve as a valid instrument for estimating the causal

effect of the marginal C-section delivery, three additional conditions must be satisfied:

relevance, monotonicity, and the exclusion restriction. As shown in Table A7, physician C-
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Figure 9: Check of random assignment

Notes: The left hand side reports coefficients π1, and 95% confidence intervals, from a regression of
C-section delivery on patient characteristics (Pi), with controls for hospital-month-year, hospital-day of
week, and patient characteristics Xi. The right hand side reports the same coefficient estimates in a
regression of physician C-section intensity on Pi, with the same controls (see Equation (14)). C-section
intensity is standardized. Standard errors are clustered at the physician level. F-statistic for joint
significance of Pi on the outcome C-section delivery is F = 294.908 and on the outcome physician
C-section intensity is F = 2.527 . This is consistent with our assumption that, conditional on controls,
low-risk patients in labor are quasi-randomly assigned to a delivering physician.
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section intensity strongly predicts C-section delivery, confirming relevance. The monotonicity

assumption requires that higher C-section intensity physicians must at least weakly increase

the probability of C-section for all patients. A violation of this would occur if a physician is

relatively likely to perform a C-section on some set of patients, but relatively less likely for

others. In Table 13 we show the first-stage estimate for a variety of subsamples in column 3,

confirming that higher C-section intensity physicians increase the probability of C-section

delivery for different patient types.

The exclusion restriction requires that C-section intensity influences health outcomes

Yi only through the channel of delivery method. This is the strongest assumption of using

physician C-section intensity as an instrument for the delivery method, and is less likely

to hold for some health outcomes. Assignment to a high C-section intensity physician is a

bundled treatment: high C-section intensity providers are more likely to perform C-sections,

but they also differ along other dimensions. Table 8 compares observable demographic and

practice characteristics between physicians with higher vs. lower C-section intensity. Most

notably, high C-section intensity physicians, on average, have more experience (completed

residency earlier), are more likely to be male, and perform more scheduled C-sections. If

other aspects of physician practice style are correlated with C-section intensity and with

health outcomes, our IV results will be biased.

The majority of our relevant health outcomes are mechanically related to delivery method,

and it is reasonable to assume that the exclusion restriction holds34. However, for some

outcomes, there is greater concern that other aspects correlated with C-section intensity

could affect outcomes. For example, more highly experienced physicians may be better able

to identify early onset complications and avoid severe delivery or postpartum complications.

In this case, our IV results will be biased because they also capture the impact of other

correlated dimensions of physicians on outcomes in addition to the C-section.

To test the mechanism behind the IV results, we control for other observable dimensions

of practice style. We follow the same steps used to construct physician C-section intensity to

create other measures of physician practice style. First, intervention intensity in vaginal births

34For example, infection of the C-section incision is a common complication of C-section delivery, and is
directly related to delivery method. It is improbable that a physician’s C-section intensity would influence
postpartum infection for any reason other than their decision to perform a C-section.
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Table 8: Characteristics of high vs low C-section intensity physicians

(1) (2) (3)
Above Median Below Median ∆

Average C-section appropriateness 0.22 0.22 -0.00***
(of patients in main NTSV sample) (0.04) (0.03) (0.00)
Year completed residency 2002.38 2002.96 0.58**

(9.83) (9.82) (0.22)
Female 0.52 0.55 0.03***

(0.50) (0.50) (0.01)
MFM specialist 0.03 0.03 -0.00

(0.16) (0.16) (0.00)
Total Medicaid deliveries 304.39 308.82 4.43

(262.20) (278.84) (4.88)
Mean annual Medicaid deliveries 38.84 39.65 0.81

(29.67) (33.15) (0.57)
% Patients high C-section risk 0.21 0.19 -0.02***

(0.07) (0.07) (0.00)
% Patients NTSV 0.18 0.18 0.00*

(0.07) (0.07) (0.00)
% Deliveries C-section 0.33 0.27 -0.06***

(0.10) (0.10) (0.00)
% of Patients with scheduled C-section 0.20 0.18 -0.03***

(0.08) (0.07) (0.00)
% Patients Black 0.20 0.20 0.00

(0.19) (0.19) (0.00)
% Patients White 0.38 0.38 -0.00

(0.24) (0.25) (0.00)
% Patients seen for prenatal care 0.46 0.47 0.01*

(0.27) (0.27) (0.00)
N 6,153 6,153 12,306

Notes: Table presents sample means for physicians with above vs. below median C-section intensity.
t-tests for differences in means are performed above vs. below median C-section intensity. We use this data
to measure the year a physician completed residency. Note that physicians who completed residency after
2011 may not match to this file, in which case the year of residency completion is missing. Maternal Fetal
Medicine (MFM) specialists have additional training in high-risk obstetrics care. * indicates p < 0.10, **
for p < 0.05, and *** for p < 0.01.
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(use of vacuum or forceps), and second the tendency to use artificial rupture of membranes

(AROM) for labor augmentation.35 In our IV results, we test the extent to which our IV

estimates change when controlling for aspects of physician practice style, which helps alleviate

some concerns that physician C-section intensity is biased by other correlated dimensions

of practice style. For all outcomes, we also present the reduced form effect of physician

C-section intensity on health outcomes from Equation (11), which does not rely on the

exclusion restriction for interpretation.

7. Results: Health Effects of Physician Practice Style

In this section, we present reduced-form results of the impact of physician C-section intensity

from Equation (11), along with IV results from Equation (12) and Equation (13). The

reduced-form coefficients show the causal effect of being assigned to a 10 percentage point

higher C-section intensity physician, which is approximately the difference between a physician

at the 75th percentile and 25th percentile of the C-section intensity distribution. IV results

show the implied causal effect of the marginal unplanned C-section on the probability of

health complications, expressed in percentage points. In column (3) we show reduced-form

results are robust to including patient demographics and controls for ex-ante patient risk

of complications: race/ethnicity, indicators for > 20 prenatal claims or no prenatal claims,

prenatal mental health disorders, hypertensions, and asthma.36 In column (5) we show that

IV results are robust to controlling for two other dimensions of physician practice style:

physician intervention intensity in vaginal deliveries and physician propensity to use artificial

rupture of membranes for induction (AROM).

For maternal health, we focus on three time windows: delivery complications reported on

the delivery claim, postpartum health outcomes within 60 days of delivery, and postpartum

health outcomes within one year of delivery. Federal law requires states to continue pregnancy-

related Medicaid coverage for at least 60 days postpartum. During our sample period (2015-

2019), a growing number of states opted to implement continuous coverage for women enrolled

35Labor augmentation with pitocin is not recorded in the Medicaid claims data. We use AROM as a proxy
for more intervention-intensive labor.

36We chose these controls as they are most likely to correlate with our outcomes of interest.
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in pregnancy-related Medicaid for 12 months postpartum (Eckert, 2020). In our sample of

low-risk first-time births, 90% of beneficiaries are enrolled in Medicaid in the month following

delivery, but only 44% remain continuously enrolled for one year postpartum. For outcomes

within 60 days (one year) of delivery, we require the beneficiary to remain enrolled in Medicaid

for at least one month37 (one year) following delivery.

Table 9 reports maternal health outcomes during delivery and within 60 days postpartum.

Lacerations (3rd or 4th degree) are complications of vaginal delivery, and we would expect

high C-section intensity physicians to reduce complications of vaginal birth by avoiding more

difficult labors. While the sign is negative, we do not find a statistically significant effect.

Severe Maternal Morbidity (SMM) is a composite measure of severe complications, excluding

blood transfusions. The medical literature has found C-sections are associated with a 2.7

times higher risk of SMM, and are estimated to contribute to 27% of all SMM cases (Leonard

et al., 2019). We find a positive and marginally statistically significant relationship between

C-section intensity and SMM; however, our estimated SMM rate is much lower than the

estimated 1.5% incidence of SMM in the full population. This is because we have a healthier

population than average and we focus on only SMM complications occurring on the delivery

claim itself. Thus, in our sample, the majority of SMM complications are direct or indirect

complications of the C-section surgery itself. Thus, the large estimated effect reflects the

mechanical relationship between C-section and surgical complications.

We find that higher physician C-section intensity causes a statistically significant increase

in complications within 60 days postpartum. It is well documented in the medical literature

that postpartum infections are more common for patients who delivered via C-section, and

particularly for unplanned C-sections (Boushra et al., 2025).38 We find that a 10 percentage

point increase in physician C-section intensity increases the probability of postpartum infection

diagnosis by 0.08 percentage points, or 2.8%, and prescriptions for antibiotics by .22 percentage

points, or 1.6%. Our IV results imply that an unplanned C-section leads to a 3.7 percentage

37Specifically, we require beneficiaries to be enrolled in the month of delivery, and the month following
delivery.

38One mechanism for this is infection of the surgical site, which can only occur after a C-section, and
has an estimated incidence of 3% to 15% in the medical literature (Zuarez-Easton et al., 2017). C-sections
are also an open surgery, leading to an increased risk of upper reproductive tract infections. Additionally,
because catheterization is standard, there is a higher risk of urinary tract infections.
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Table 9: Implications for maternal delivery outcomes and postpartum physical health

Mean Reduced form Instrumental variables
(1) (2) (3) (4) (5)

Delivery outcomes:
Laceration (3rd or 4th degree) 2.51% -0.016 -0.013 -0.768 0.145

(0.029) (0.029) (1.380) (1.370)
Severe Maternal Morbidity∗ 0.45% 0.022∗ 0.022∗ 1.054∗ 1.074∗

(0.012) (0.012) (0.560) (0.551)

Postpartum health - within 60 days:
Postpartum infection 2.90% 0.080∗∗∗ 0.081∗∗∗ 3.688∗∗∗ 3.656∗∗∗

(0.030) (0.030) (1.390) (1.316)
Antibiotic prescription 13.51% 0.222∗∗∗ 0.230∗∗∗ 10.279∗∗∗ 11.689∗∗∗

(0.066) (0.066) (3.030) (2.882)
ER visit 14.10% 0.244∗∗∗ 0.237∗∗∗ 11.262∗∗∗ 12.382∗∗∗

(0.059) (0.059) (2.765) (2.597)
Urgent care visit 1.82% 0.017 0.019 0.803 1.140

(0.029) (0.028) (1.318) (1.187)
Baseline patient controls ✓ ✓ ✓ ✓

Additional patient controls ✓

Physician practice style controls ✓

Hospital-month-year ✓ ✓ ✓ ✓

Hospital-day of week ✓ ✓ ✓ ✓

Notes: Column (1) reports the share of our sample with each complication. Columns (2) and (3) show
the percentage-point change in each outcome associated with a 10 percentage-point increase in physician
C-section intensity. Columns (4) and (5) report IV coefficients x 100, interpreted as the percentage point
change in each outcome from a marginal C-section. Delivery outcomes reported for full sample, N=570,617.
Postpartum health outcomes within 60 days are restricted to only those enrolled in Medicaid in the month
following delivery, N=511,558. All regressions include baseline patient controls (induction, preeclampsia,
eclampsia, advanced maternal age, macrosomia, obesity, diabetes, and an indicator for any prenatal care
with delivering physician) and fixed effects for hospital-month-year and hospital-day of week of the delivery.
Column (3) includes additional controls for patient demographic and risk characteristics: race/ethnicity,
indicators for > 20 prenatal claims or zero prenatal claims, prenatal mental health disorder, hypertension,
and asthma. Standard errors are clustered at the physician level. Column (5) includes controls for physician
practice style: “intensity” in vaginal deliveries, and “intensity” of labor augmentation. Standard errors are
clustered at the physician level. * indicates p < 0.10, ** for p < 0.05, and *** for p < 0.01.
∗ We use the CDC definition of severe maternal morbidity, excluding blood transfusion. SMM measure
includes only complications occurring on the delivery claim. (CDC SMM definition).
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point increase in the probability of infection, off a baseline rate of 2.9%, and a 10.2 percentage

point increase off a base rate of 13.5% in our sample. We also find that the marginal C-section

leads to a statistically significant increase in ER visits. Given barriers to access primary care

among Medicaid beneficiaries, many of these visits are likely related to postpartum infections.

While it is expected that higher C-section utilization will have negative maternal health

outcomes, the effects on newborns are less clear. Card et al., 2023 find that high C-section

hospitals improve outcomes for newborns by avoiding longer labor, but other papers, including

Corredor-Waldron et al., 2024, find that unplanned C-sections increase both maternal and

infant complications in low-risk births. Table 10 shows the reduced-form effect of a 10

percentage point increase in delivering physician C-section intensity on newborn health

outcomes, along with the associated IV coefficients. We report outcomes at delivery, within

30 days of birth, and within the first year of life. We find a positive, although not statistically

significant, association between high C-section physicians and increases in NICU admissions

and birth trauma. We follow Card et al., 2023 and report the effect on a composite measure

of infant death within 30 days or hospitalization of six or more days, a proxy for “adverse

health event”. We do not find a statistically significant effect of physician practice style on

this measure, or an effect on hospitalization and ER visits within 30 days. In sum, we find

that marginal C-sections in our sample have a negative, but not statistically significant, effect

on newborn and neonatal health. We can rule out that high C-section intensity physicians

cause a significant benefit to newborn or neonatal health by avoiding more difficult labors.

We also report infant outcomes related to respiratory illness within one year of delivery.

This is in light of medical literature suggesting a link between C-section delivery and respiratory

outcomes (Liang et al., 2023; Wolf, 2018). The theorized mechanism for this relationship

is exposure to maternal microbes during delivery, leading to differences in immune system

development.39 For newborns delivered by more C-section intensive physicians, we do see a

statistically significant increase in ER visits within one year, primarily driven by visits for

respiratory illness. Our IV estimates suggest that the marginal C-section is 15.8 percentage

points more likely to visit the emergency room within the first year of life, and we find

39Note that evidence on the causal relationship between C-section delivery and long-term respiratory
effects is mixed; many papers find no relationship (Jakobsson et al., 2014; Magnus et al., 2011; Salem et al.,
2022).
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Table 10: Implications for infant health

Mean Reduced form Instrumental variables
(1) (2) (3) (4) (5)

Newborn delivery complications:
NICU 12.95% 0.100 0.104 6.288 3.876

(0.089) (0.088) (5.476) (5.312)
Birth trauma to newborn 6.26% 0.066 0.070 4.156 4.101

(0.060) (0.060) (3.780) (3.649)
Neonatal outcomes - within 30 days:
Any readmission 10.12% 0.032 0.034 2.487 2.006

(0.077) (0.077) (4.729) (4.586)
Any ER visit 10.82% -0.094 -0.111 -4.724 -5.202

(0.077) (0.077) (4.721) (4.586)
Infant health - within 1 year:
Any ER visit 56.64% 0.337∗ 0.278 15.844∗ 14.848∗

(0.191) (0.186) (9.181) (8.881)
ER for any respiratory illness 28.71% 0.361∗∗ 0.311∗ 16.975∗∗ 16.612∗∗

(0.167) (0.164) (7.970) (7.732)
Any respiratory diagnosis 68.67% 0.193 0.186 9.076 11.040

(0.169) (0.168) (7.942) (7.709)
Baseline patient controls ✓ ✓ ✓ ✓

Additional patient controls ✓

Physican practice style controls ✓

Hospital-month-year ✓ ✓ ✓ ✓

Hospital-day of week ✓ ✓ ✓ ✓

Notes: Column (1) reports the share of our sample with each complication. Columns (2) and (3) show
the percentage-point change in each outcome associated with a 10 percentage-point increase in physician
C-section intensity. Reported coefficients are measured in percentage-point changes in the outcome. Columns
(4) and (5) report IV coefficients x 100, interpreted as the percentage point change in each outcome from a
marginal C-section. Delivery outcomes reported for the full sample of linked newborns, N=268,324. Neonatal
health outcomes restricted to only those enrolled in Medicaid in the month following delivery, N=248,207.
Newborn health outcomes within 1 year of delivery restricted to those enrolled in Medicaid for a full year after
delivery, N=134,772. All regressions include baseline (maternal) patient controls (induction, preeclampsia,
eclampsia, advanced maternal age, macrosomia, obesity, diabetes, and an indicator for any prenatal care
with delivering physician) and fixed effects for hospital-month-year of delivery. Column (3) adds controls for
race/ethnicity, indicators for > 20 prenatal claims or zero prenatal claims, prenatal mental health disorder,
diabetes, hypertension, and asthma. Column (5) controls for additional dimensions of physician practice
style. Standard errors are clustered at the physician level. * indicates p < 0.10, ** for p < 0.05, and *** for
p < 0.01.
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this increase is being driven entirely by visits for respiratory illness. Newborns delivered

via C-section are 17 percentage points (59%) more likely to visit the emergency room for a

respiratory illness. While this estimated effect on infant respiratory illness is surprisingly large,

it is somewhat similar to prior estimates in the literature. Card et al., 2023’s instrumental

variables strategy using hospital C-section intensity finds that the marginal C-section increases

ER visits by 40% within the first year for all births in California. Given the high rate of ER

use among the Medicaid population, it is not surprising that we see a particularly strong

effect on this outcome.

The final category of health outcomes we study is postpartum mental health; the results

are presented in Table 11. The postpartum period represents a particularly vulnerable time

for mental health. In the United States, suicide accounts for 5–20% of all maternal deaths,

and mental health disorders, specifically suicides and overdoses, are the leading cause of

maternal mortality within one year of delivery (Clarke et al., 2023). The medical literature

and qualitative studies have documented that unplanned C-section delivery is associated with

higher rates of postpartum depression and post-traumatic stress disorder (PTSD) relative

to vaginal deliveries or scheduled C-sections (Grisbrook et al., 2022; Orovou et al., 2025).

C-sections are also associated with longer recovery time postpartum, and in some studies,

lower rates of breastfeeding, which has been hypothesized to increase the risk of developing

mental health disorders (Benton et al., 2019). We find suggestive evidence that mental

health diagnoses are increased by more C-section intensive physicians. A 10 percentage point

increase in C-section intensity is associated with a 2% higher likelihood of anxiety diagnosis

within 60 days postpartum, but small (< 1%) and insignificant impacts on other measures of

mental health. Within one year, we find a 10 percentage point increase in C-section intensity

is associated with roughly 1% more mental health diagnoses and medication use, although

only the outcome of any mental health diagnosis is statistically significant at the 95th percent

confidence interval.

The corresponding IV estimates imply that the marginal C-section in our sample is

associated with a 3 percentage point increase in anxiety diagnoses within 60 days postpartum,

a nearly 100% increase relative to the 3.19% baseline rate. Within one year, we find

approximately 10 percentage point increase in any mental health diagnosis, or a 42% increase
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Table 11: Implications for maternal postpartum mental health

Mean Reduced form Instrumental variables
(1) (2) (3) (4) (5)

Postpartum mental health - within 60 days:
Any mental health diagnosis 8.22% 0.036 0.026 1.659 1.718

(0.049) (0.045) (2.262) (2.106)
Anxiety diagnosis 3.10% 0.062∗∗ 0.056∗ 2.864∗∗ 2.752∗∗

(0.031) (0.030) (1.453) (1.335)
Depression diagnosis 2.61% 0.018 0.013 0.850 0.289

(0.027) (0.026) (1.256) (1.171)
Any mental health medication 6.43% 0.040 0.046 1.835 2.034

(0.042) (0.041) (1.916) (1.777)
Antidepressant prescription 5.74% 0.037 0.043 1.727 2.002

(0.039) (0.039) (1.806) (1.677)
Anxiolytic prescription 1.21% 0.017 0.017 0.764 0.872

(0.019) (0.019) (0.876) (0.805)

Postpartum mental health - within 1 year:
Any mental health diagnosis 24.70% 0.259∗∗ 0.243∗∗ 9.718∗∗ 4.566

(0.115) (0.106) (4.328) (2.882)
Anxiety diagnosis 12.56% 0.146∗ 0.134 5.470∗ 2.956

(0.087) (0.083) (3.257) (2.066)
Depression diagnosis 10.38% 0.123 0.109 4.626 1.163

(0.079) (0.075) (2.967) (1.881)
Any mental health medication 15.97% 0.138 0.152∗ 5.185 3.240

(0.094) (0.091) (3.514) (2.393)
Antidepressant prescription 13.86% 0.145 0.158∗ 5.430 3.475

(0.089) (0.086) (3.325) (2.245)
Anxiolytic prescription 5.34% 0.091 0.094∗ 3.430 2.654∗

(0.058) (0.057) (2.169) (1.357)
Baseline patient controls ✓ ✓ ✓ ✓

Additional patient controls ✓

Physican practice style controls ✓

Hospital-month-year ✓ ✓ ✓ ✓

Hospital-day of week ✓ ✓ ✓ ✓

Notes: Column (1) reports the share of our sample with each complication. Columns (2) and (3) show the
percentage-point change in each outcome associated with a 10 percentage-point increase in physician C-section
intensity. Columns (4) and (5) report associated IV estimates x 100, interpreted as the percentage point
change in each outcome from a marginal C-section. Anxiety and depression are a subset of “any mental health
diagnosis”. Anxiolytic refers to medications used to reduce anxiety, such as benzodiazepines (e.g., lorazepam).
Postpartum health within 60 days is restricted to only those enrolled in Medicaid in the month following
delivery, N=511,558. Postpartum health outcomes within 1 year of delivery is restricted to those enrolled in
Medicaid for a full year after delivery, N=237,634. All regressions include baseline patient controls (induction,
preeclampsia, eclampsia, advanced maternal age, macrosomia, obesity, diabetes, and an indicator for any
prenatal care with delivering physician) and fixed effects for hospital-month-year of delivery. Column (3)
adds controls for race/ethnicity, indicators for > 20 prenatal claims or zero prenatal claims, prenatal mental
health disorder, diabetes, hypertension, and asthma. Column (5) controls for other aspects of physician
practice intensity. Standard errors are clustered at the physician level. * indicates p < 0.10, ** for p < 0.05,
and *** for p < 0.01.
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off the base rate of 24.7%. While large, these estimates are in line with the medical literature.

Xu et al., 2017’s meta-analysis finds emergency C-sections are associated with 47% increase in

postpartum depression.40 However, of the outcomes presented, these IV results are most likely

to be biased by unobserved dimensions of physician practice style. In column (5), we present

IV results with additional controls for other dimensions of physical practice style (intensity

of intervention in vaginal delivery and propensity to use artificial rupture of membranes

to augment labor). Many of the point estimates are significantly smaller and no longer

significant once we control for other dimensions of practice style. This suggests that other

correlated dimensions of physician practice style may be driving the relationship between

C-section intensity and mental health outcomes, in addition to C-section itself. Even if the

magnitudes are accurate, a marginal C-section in our context may be particularly stressful

for mothers. Potential mechanisms and discussion of compliers in this context are discussed

in the next section.

Additionally, measuring postpartum mental health outcomes in the claims data is com-

plicated by two confounders. First, many women are wary of taking medications while

breastfeeding. While there are many safe and effective medications to treat postpartum

depression and anxiety while breastfeeding, concerns over safety may still limit their take-up

(Lanza di Scalea and Wisner, 2009). Rates of breastfeeding are lower on average for women

with C-section deliveries (Chen et al., 2018). If C-section delivery causes lower success with

breastfeeding, this could conflate the relationship between C-section delivery and medication

use, particularly within 60 days postpartum. Second, providers often recommend a shorter

follow-up window after a C-section to check on the healing of the incision, and on average,

patients have more postpartum visits after a C-section delivery than after vaginal birth. This

means that an increase in mental health diagnoses and prescriptions following a C-section

could be evidence of worsened mental health, or of increased diagnosis and treatment of

underlying mental health conditions.

In Table A8, we show the relationship between physician C-section intensity and follow-

up care. Patients seen by higher C-section intensity physicians are more likely to have a

40Most studies included in this meta-analysis used the Edinburgh Postnatal Depression scale to define
postpartum depression.
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postpartum visit immediately following delivery, but there is no statistically significant effect

on the overall probability of receiving postpartum care.41 We further examine the type of

visit where mental health diagnoses are made (follow-up postpartum visits vs. emergency

room visits), and find no statistically significant association with physician C-section intensity

at either location. Taken together, these results suggest that differences in postpartum

healthcare utilization are unlikely to explain the observed mental health effects.

7.1 Potential Mechanisms and Heterogeneity

When interpreting our results, it is important to consider our sample as well as the types of

births and patients that are most impacted by physician C-section intensity. First, we are

focusing only on unplanned C-sections among low-risk first-births. In general, unplanned

C-sections typically have worse maternal health outcomes compared with planned C-sections

because they occur after a trial of labor and are often emergent. Additionally, we are picking

up the effect of C-sections only for deliveries that are influenced by physician C-section

intensity. In Medicaid claims data, all unplanned C-sections must have a diagnosed medical

indication, so we necessarily see higher C-section intensity physicians diagnosing patients with

complications at higher rates. Table 12 shows the association between physician C-section

intensity and medical indications for C-section. The marginal C-sections are much more

likely to be diagnosed with obstructed labor, disproportion, fetal distress, and inadequate

contractions. These are the most common medical indications for unplanned C-section, and

are also diagnoses for which there is more physician discretion. Thus, the IV results from this

paper do not generalize to the average causal effect of a C-section for all patients. Rather,

they provide insight into the health consequences of marginal unplanned C-sections among

low-risk births. From a policy standpoint, this is the group where physician discretion is

most influential, and thus the group that policies aimed at lowering C-section rates are likely

to target.

The diagnoses associated with a marginal C-section are particularly important to consider

41Note that diagnoses codes differentiate between postpartum care for lactation, immediate care following
delivery, and postpartum follow-up care. We only see an effect of physician intensity on immediate care
following delivery.
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Table 12: Impact of C-section intensity on medical indications for C-section

Mean Reduced form
Outcome (1) (2) (3)
Inadequate contraction 10.82% 0.809∗∗∗ 0.806∗∗∗

(0.070) (0.070)
Long labor 1.72% 0.008 0.009

(0.024) (0.024)
Obstructed labor 6.12% 0.393∗∗∗ 0.394∗∗∗

(0.046) (0.046)
Maternal distress or exhaustion 1.90% 0.062∗∗ 0.064∗∗

(0.026) (0.026)
Placental separation 0.57% 0.033∗∗ 0.033∗∗

(0.013) (0.013)
Cord complication 21.28% -0.050 -0.041

(0.077) (0.077)
Disproportion 1.77% 0.342∗∗∗ 0.343∗∗∗

(0.037) (0.037)
Fetal distress 29.49% 0.631∗∗∗ 0.618∗∗∗

(0.100) (0.100)
Infection in labor 1.65% 0.006 0.006

(0.021) (0.021)
Antepartum hemorrhage 0.15% 0.005 0.004

(0.007) (0.007)
Baseline patient controls ✓ ✓

Additional patient controls ✓

Hospital-month-year ✓ ✓

Hospital-day of week ✓ ✓

Notes: Column (1) reports the share of our sample with each complication. Columns (2) and (3) show
the percentage-point change in each outcome associated with a 10 percentage-point increase in physician
C-section intensity. N=570,617. All regressions include baseline patient controls (induction, preeclampsia,
eclampsia, advanced maternal age, macrosomia, obesity, diabetes, and an indicator for any prenatal care
with delivering physician) and fixed effects for hospital-month-year of delivery. Column (3) adds controls for
race/ethnicity, indicators for > 20 prenatal claims or zero prenatal claims, prenatal mental health disorder,
diabetes, hypertension, and asthma. Standard errors are clustered at the physician level. * indicates p <
0.10, ** for p < 0.05, and *** for p < 0.01.
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when interpreting our mental health results. From a medical perspective, most unplanned

C-sections in our setting are fairly routine, and approximately 30% of all unplanned C-sections

receiving a diagnosis of fetal distress. However, from the patient’s perspective, the diagnosis

of fetal distress may generate fear for her baby’s safety. Thus, it is plausible that the mental

health effects are in part driven by receiving a worrying diagnosis during labor, rather than

the procedure itself.

For interpreting our results, it is also useful to consider who the “compliers” are in this

setting. These are patients who would not have received a C-section if they had not been

assigned to a low C-section intensity physician, but would deliver via C-section if assigned

to a high C-section intensity physician. On the other hand, always-takers are patients who

would always deliver via C-section, regardless of the physician they were assigned to. Vice

versa, a never-taker would never deliver via C-section. This is equivalent to the group of

patients who deliver vaginally, even when assigned to the highest intensity physician. We

estimate the share of each patient type following the method from (Dahl et al., 2014; Dobbie

et al., 2018; Eichmeyer and Zhang, 2022), where z̄ is the most C-section intensive physician

(top 1%) and z is the least intensive (bottom 1%).

πcomplier = P (cz̄i > czi) = P (ci | Zi = z̄) − P (ci | Zi = z)

πalways−taker = P (cz̄i = czi = 1) = P (czi = 1)

πnever−taker = P (cz̄i = czi = 0) = P (cz̄i = 0)

In Table 13 we break our sample by patient demographics and characteristics of labor.

We report in column (1) the share of the overall sample in each category and in column

(2) the C-section rate of each category. In column (3), we report the first-stage coefficient,

and in column (4), the share of compliers. One key takeaway is that “marginal” patients

with predicted C-section appropriateness between 0.4 and 0.6, are much more impacted by

physician practice style. This is consistent with the predictions of our model. Additionally,

patients over the age of 35 (advanced maternal age) are more impacted, which is driven by

the fact that this group is higher risk on average. A second key finding is that Hispanic

patients are disproportionately influenced by practice style. Our model predicts that, all else
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equal, physician practice style will matter more for patients with lower agency. If language

barriers or cultural norms influence the ability of Hispanic patients to express preferences

during delivery, this could explain our results. However, further work is needed to unpack

the mechanisms behind this finding.

7.2 Implications for Subsequent Pregnancies

There are also strong dynamic effects of the delivery method. Although vaginal birth after

cesarean (VBAC) rates are rising, most patients who deliver via unplanned C-section in their

first birth deliver via scheduled C-section in their second birth.42 For a subset of our main

NTSV sample, we can also observe a second birth during our sample period and estimate the

following regression:

C-section2nd birth
ijbdt = α + βC-section Intensity1st birth

i,jt + γbt1st birth + γbd1st birth + βX1st birth
i + eijbdt

(15)

where the outcome is an indicator for C-section at the second birth, regressed on the C-

section intensity of the physician assigned at the first birth. Baseline controls include health

characteristics Xi, hospital-month-year γbt and hospital-day of week γbd, all defined based

on health risks and delivery date of the patients’ first birth. This estimates the relationship

between the C-section intensity of the first delivering physician on the probability of C-section

in their second birth.

Figure 10 shows the distribution of the C-section intensity instrument for this sample, and

the local linear fit of β from Equation (15). As would be expected, the relationship between

the intensity of C-sections of the physician assigned to a patient’s first delivery also has a

strong positive effect on the probability of C-section in her second birth. We find that being

quasi-randomly assigned to a 10 percentage point more C-section intense physician for a first

birth increases the probability that the second delivery is a C-section by 2.29 percentage

42In our sample period, between 12-13% of all US births were VBACs (Osterman, 2020).
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Table 13: Heterogeneity by patient type

Share of sample C-section rate First stage Share compliers
Subsample (x): P(X=x) P (ci = 1|X = x) β P (complier | X = x)

Full sample 21.032 0.211∗∗∗ 7.697
(0.013)

White 34.802 18.971 0.129∗∗∗ 5.232
(0.019)

Black 19.286 23.566 0.177∗∗∗ 4.442
(0.023)

Hispanic 31.667 19.446 0.365∗∗∗ 10.165
(0.022)

Spanish speaker 7.937 18.276 0.414∗∗∗ 8.594
(0.040)

Non-citizen 6.802 21.004 0.278∗∗∗ 4.960
(0.041)

“Marginal” patients: 0.4 ≤ hi ≤ 0.6 4.803 44.057 0.359∗∗∗ 18.073
(0.071)

More than 20 prenatal visits 12.848 22.989 0.187∗∗∗ 6.222
(0.031)

Artificial rupture of membranes 21.714 12.751 0.120∗∗∗ 2.867
(0.018)

Advanced maternal age 3.250 32.717 0.306∗∗ 12.834
(0.124)

Admitted on weekend 22.071 18.077 0.199∗∗∗ 5.882
(0.020)

Induction 24.737 24.984 0.211∗∗∗ 6.430
(0.022)

Saw delivering physician 53.370 20.968 0.200∗∗∗ 7.249
for prenatal care (0.017)

Notes: This table splits our full sample into subsamples based on demographics and patient risk. Column
(1) reports the percent of our full sample in each subsample (x). Column (2) reports the C-section rate for
each subsample. Column (3) reports the estimated first-stage coefficient β (standard error in parentheses).
* indicates p < 0.10, ** for p < 0.05, and *** for p < 0.01. Column (4) reports the estimated % of
each subsample that are “compliers” - i.e., the share who would not receive a C-section if assigned to the
lowest-intensity physician but would if assigned to the highest-intensity physician.
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Figure 10: Association between C-section intensity of physician in first birth on delivery
method of second birth

Notes: This figure is based on the subset of our main sample for whom we can observe a second delivery
in Medicaid: N = 106,685. The patient’s first observed birth must be NTSV and unscheduled (either
vaginal birth or unplanned C-section); however, no restrictions are placed on their second birth. The
histogram shows the distribution of the C-section intensity of first delivering provider on the x-axis
against the percent of the sample on the left-hand y-axis. Graph is truncated at ±0.25. On the right-hand
y-axis, we plot a local linear regression of β from a regression of C-section delivery in the second birth on
C-section intensity of first physician. Controls are included for health risks Xi, hospital-month-year, and
hospital-day of week; all controls are defined in the patient’s first birth. We find β =2.29 (standard error
= 0.24), implying that for women who deliver twice in our sample, being quasi-randomly assigned to
a 10 percentage point more “C-section intense” physician increases the probability of C-section by 2.3
percentage points. C-section rate in this sample is 20.38%.

points off a base rate of 20.38%.43 This implies that, in our sample of patients with two

observed births, the large majority of patients with a marginal unplanned C-section in their

first birth go on to have a C-section in their second birth, typically via scheduled C-section.

Table 14 compares characteristics between our main NTSV sample with and without an

observed second birth in Medicaid. Patients for whom we are able to observe a second birth

are younger on average, more likely to be white, and less likely to qualify for Medicaid based

on income < 133% Federal Poverty Line (FPL). Patients with a second observed birth also

43For comparison, the first-stage effect of a 10 percentage point increase in C-section intensity on delivery
method in the first birth for the subsample of patients with a second observed birth in our data is 2.69
percentage point increase off a base rate of 17.93%.
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had better health outcomes on average in their first birth: a lower rate of C-section delivery

and were less likely to face complications such as fetal distress or inadequate contractions in

their first birth. This reflects both differences in the demographics and health of patients who

choose to have multiple children and/or children close in age, as well as causal effects from

the outcome of their first birth. We would expect, on average, women with more difficult

pregnancies and deliveries to delay future pregnancies or forgo having additional children

altogether. Prior research from Austria has found women with unplanned C-sections in their

first birth have a 13.6% reduction in lifetime fertility (Halla et al., 2020).

We test this relationship between unplanned C-sections and fertility in our sample by

measuring the impact of physician C-section intensity on the likelihood of observing a second

delivery in Medicaid between 2015 and 2019. Table 15 reports the reduced-form effect of

C-section intensity on fertility, along with the instrumental variables estimate of the causal

impact of a marginal C-section. We find that in our sample, marginal C-sections reduce the

likelihood of a second birth by between 5-6 percentage points, off a base rate of 20.38%. This

implies a 28% reduction in fertility. This effect does not appear to be driven by differences in

patients exiting Medicaid insurance: we find no effect of C-section intensity on the probability

a patient remains enrolled in Medicaid for at least one year postpartum. However, the exact

mechanisms for the fertility effect are unclear. The drop in fertility following a C-section

could reflect changes in preferences for having additional children, impacts on infertility, an

increase in spacing between children, or some combination of the three.
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Table 14: Comparison of demographics and first birth risk factors, for patients with and
without a second observed birth

(1) (2) (3)
Patients with second birth Only one birth observed ∆

C-section 0.18 0.21 0.03***
(0.38) (0.40) (0.00)

Hispanic 0.32 0.32 -0.00
(0.47) (0.47) (0.00)

Black 0.19 0.19 0.00
(0.39) (0.39) (0.00)

White 0.37 0.34 -0.02***
(0.48) (0.47) (0.00)

Medicaid eligibility < 133% FPL 0.20 0.23 0.03***
(0.40) (0.42) (0.00)

Medicaid eligibility SSI 0.02 0.01 -0.00***
(0.13) (0.12) (0.00)

Age 22.14 23.28 1.13***
(4.22) (4.97) (0.01)

Over 20 prenatal visits 0.16 0.15 -0.01***
(0.36) (0.35) (0.00)

Fetal distress 0.26 0.30 0.04***
(0.44) (0.46) (0.00)

Inadequate contractions 0.09 0.11 0.02***
(0.29) (0.32) (0.00)

Obstructed labor 0.06 0.06 0.00***
(0.23) (0.24) (0.00)

Disproportion 0.02 0.02 0.00***
(0.12) (0.13) (0.00)

N 106,685 463,932 570,617
Notes: This table compares patients in our main sample of NTSV births, with and without a second observed
birth in Medicaid 2015-2019. All characteristics reported are from the patients’ first birth. Medicaid eligibility
variables refer to patients eligible due to income below 133% of the Federal Poverty Line (FPL) and those
eligible via Social Security (SSI) benefits due to disability. * indicates p < 0.10, ** for p < 0.05, and *** for
p < 0.01.
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Table 15: Implications of unplanned C-sections on future fertility

Mean Reduced form Instrumental variables
(1) (2) (3) (4) (5)

Second birth in sample 20.38% -0.124∗∗ -0.128∗∗ -5.879∗∗ -5.076∗

(0.062) (0.062) (2.948) (2.910)
Enrolled in Medicaid for 43.51% 0.036 0.012 1.707 2.166
≥ 1 year postpartum (0.068) (0.067) (3.221) (3.210)

Baseline patient controls ✓ ✓ ✓ ✓

Additional patient controls ✓

Physician practice style controls ✓

Hospital-month-year ✓ ✓ ✓ ✓

Hospital-day of week ✓ ✓ ✓ ✓

Notes: “Second birth in sample” is an indicator for whether a given patient in our main sample has a second
birth in Medicaid from 2015-2019. “Enrolled in Medicaid for ≥ year postpartum” is an indicator of whether
the patient remains continuously enrolled in Medicaid for one year postpartum. Column (1) reports the
mean of each variable. Columns (2) and (3) report the effect of a 10 percentage point increase in physician
C-section intensity on each outcome. Columns (4) and (5) report associated IV estimates x 100, interpreted
as the percentage point change in each outcome from a marginal C-section. N = 570,617 * indicates p <
0.10, ** for p < 0.05, and *** for p < 0.01.

8. Discussion

The persistently high C-section rate in the United States has raised policy concerns about

potential overuse of surgical delivery. Even after adjusting for patient risk factors, hospital-

level C-section rates vary widely, suggesting that supply-side factors in healthcare provision

play a central role in explaining this variation (Fischer et al., 2023; Kozhimannil et al.,

2013). Most policy efforts to date have focused on state-level initiatives or hospital-level

targets.44 Our findings indicate that more than one-quarter of the variation in C-section

use is attributable to physician practice style. This is a sizable share and underscores the

importance of individual providers in shaping intervention rates. This suggests that while

systemic reforms at the hospital or state level are crucial, they are likely to be incomplete

solutions if they do not address a key source of variation: the behavior of individual physicians.

Within hospitals, we document substantial heterogeneity across physicians in their propen-

44California’s CMQCC initiative is one example of a successful state-level effort to lower the C-section
rate through hospital-level targets and quality-improvement programs in high C-section rate hospitals.
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sity to perform C-sections on otherwise similar patients. Because patients are effectively

randomly assigned to physicians through the onset of spontaneous labor and the shift rotation

of on-call providers, we can causally estimate the impact of physician practice style on delivery

method. We find large effects: being assigned to a physician with a 10 percentage point higher

C-section intensity, roughly one standard deviation, increases the probability of C-section

delivery by about 2.11 percentage points, or 10%. This effect is comparable to the difference

between being treated by a physician at the 75th versus the 25th percentile of the intensity

distribution.

Given that a C-section is a major abdominal surgery with elevated risks, it is not surprising

that we find evidence that marginal C-sections have adverse consequences for maternal health,

including higher rates of delivery complications, postpartum infection, and emergency room

visits. We also do not find evidence that newborns benefit from higher physician C-section

intensity. We observe negative but imprecise effects of marginal C-sections on neonatal

outcomes, along with a statistically significant increase in severe respiratory infections within

one year of birth. We also find important implications for maternal mental health. Patients

quasi-randomly assigned to higher C-section intensity physicians are more likely to be

diagnosed with mental health conditions within a year postpartum and have higher, although

not statistically significant, use of mental health medications. These results are particularly

salient given that mental health conditions are the leading cause of maternal mortality within

one year postpartum (Clarke et al., 2023). Because C-sections have long-term consequences,

most notably on the delivery method of subsequent births, these effects compound in future

pregnancies. We also find strong effects on fertility: a marginal C-section is associated with a

28% reduction in the probability of observing a second birth during our sample period. This

likely reflects both lower lifetime fertility and increased spacing between births.

Our analysis has several limitations. Since we rely on Medicaid claims data, we observe

only a subset of births, and our findings should be interpreted within the Medicaid setting.

The physicians and hospitals we focus on in our analysis deliver a large number of Medicaid

patients, and may not be representative of healthcare providers more broadly. In addition,

while we document clear physician effects, some of our estimates are imprecise, and we

cannot rule out modest effects on other health outcomes. Finally, we do not observe the
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counterfactual of what would happen if high-intensity physicians reduced their C-section

rates, so we cannot make definitive welfare conclusions.

Although we establish that low-risk patients treated by high-intensity physicians experience

worse health outcomes, we are unable to estimate the causal effects of practice style for

higher-risk patients. Our identification strategy relies on quasi-random assignment of low-risk

women in labor; we exclude all scheduled C-sections and higher-risk patients from our sample.

It is plausible that high-intensity physicians could improve outcomes in such cases. Examining

potential trade-offs of high-intensity physicians treating higher-risk patients is an important

avenue for future research. Further work is also needed to identify which features of the

hospital environment drive differences in C-section rates and how physician practice style is

formed. In Kissel and Roy, 2025, we assess the role of residency training in C-section use,

among other dimensions of practice style, and find that the C-section intensity of a physician’s

residency hospital is not a significant driver of post-residency practice style. A more complete

understanding of the formation of physician practice style is critical for designing policies

that effectively reduce unnecessary surgical interventions while maintaining high-quality care

for mothers and infants.
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A. Supplemental Tables and Figures

Table A1: Covariates predicting C-section appropriateness

This Paper Currie and
MacLeod, 2017

Robinson et al.,
2023

Maternal Age 5-year bins 5-year bins 5-year bins
Term (37+ weeks) ✓ – ✓

Prenatal Visits ≥ 19 – ≥ 19
Nulliparous ✓ Birth order ✓

Singleton ✓ Multiples ✓

Vertex ✓ Breech ✓

Growth Restrictions ✓(intrauterine) – ✓

Eclampsia ✓ – ✓

Preeclampsia ✓ – ✓

Other Hypertension ✓ ✓ –
Asthma ✓ Chronic lung

condition
–

Diabetes ✓ – ✓

Obesity ✓ – –
Placenta Previa ✓ ✓ –
Placental Abruption ✓ ✓ –
Herpes ✓ ✓ –
Hydramnios ✓ ✓ –
Chorioamnionitis ✓ – –
Cord Prolapse ✓ ✓ –
Isoimmunization ✓ ✓(Rh Sensitivity) –
Macrosomia ✓ – –
Antepartum Hemorrhage ✓ Uterine Bleeding –
Previous C-Section ✓ ✓ –
Previous Large Infant – ✓ –
Previous Preterm – ✓ –
Cardiac condition ✓+ congenital ✓ –
Blood disorder ✓ Anemia +

Hemoglobinopathy
–

Cervical incompetence ✓ ✓ –
Renal abnormalities ✓ ✓ –

Notes: Age is classified into 5-year bins as follows: <20, 20-24, 25-29, 30-34, ≥35. Isoimmunization is
also known as Rh sensitivity (terminology used in Currie and MacLeod, 2017).
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Table A2: Logistic regression model of C-section risk

Beta SE
Age < 20 -.1928386∗∗∗ .004246
Age 25-29 .0288876∗∗∗ .0027257
Age 30-34 .0893298∗∗∗ .0030957
Age 35+ .2269394∗∗∗ .0035983
Prenatal Claims ≥ 19 .1046772∗∗∗ .0021831
Nulliparous .7624481∗∗∗ .0026043
Term .0072586 .0048402
Singleton -.6099307∗∗∗ .0040694
Vertex -3.056423∗∗∗ .0057432
Intrauterine Growth Restriction .5275533∗∗∗ .005088
Eclampsia 1.432985∗∗∗ .0264771
Preeclampsia .8974775∗∗∗ .0040323
Other Hypertension .3488085∗∗∗ .0036775
Asthma -.0124584∗∗ .0050635
Diabetes .3131867∗∗∗ .003878
Obesity .4381966∗∗∗ .0033706
Placenta Previa 1.426388∗∗∗ .0112711
Placental Separation 1.443811∗∗∗ .0083788
Herpes .2789016∗∗∗ .0058824
Hydramnios .4656481∗∗∗ .0048721
Chorioamnionitis .8671536∗∗∗ .0058849
Cord Complications -.481389∗∗∗ .0029228
Isoimmunization -.0694652∗∗∗ .0105647
Macrosomia 1.696111∗∗∗ .0062682
Antepartum Hemorrhage .7995364∗∗∗ .0166766
Previous C-Section 3.744066∗∗∗ .002855
Congenital Heart Disease .4093788∗∗∗ .0125014
Blood Disorder .1283061∗∗∗ .0028281
Cervical Incompetence .1501317∗∗∗ .0134766
Renal Abnorm. .3903928∗∗∗ .0242845
Constant 1.310074∗∗∗ .0079258
Observations 7820852

Notes: Table presents coefficients and standard errors from a logit regression of C-section delivery on patient
characteristics.* indicates p < 0.10, ** for p < 0.05, and *** for p < 0.01.
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Table A3: Additive decomposition alternative specification: Without nulliparous restriction

Estimator Top vs. Bottom
50% 25% 10% 5%

∆ in C-section Rate...
... Overall ĉB − ĉB′ 0.119 0.195 0.292 0.362
... Due to hospitals γ̂B − γ̂B′ 0.077 0.124 0.186 0.217
... Due to physicians γ̂j(B) − γ̂j(B′) 0.034 0.059 0.091 0.121
Share of ∆ due to...
... Hospitals γ̂B−γ̂B′

ĉB−ĉB′
0.645∗∗∗ 0.635∗∗∗ 0.637∗∗∗ 0.598∗∗∗

(0.107) (0.100) (0.101) (0.106)
... Physicians γ̂j(B)−γ̂j′(B)

ĉB−ĉB′
0.287∗∗ 0.305∗∗ 0.310∗∗ 0.334∗∗∗

(0.108) (0.100) (0.101) (0.105)
N hospitals 1,268 634 254 128
N physician-hospital pairs 12,584 5,098 1,593 700
N deliveries 485,676 190,726 52,745 20,161

Notes: Reports results from Equation (4), but without restricting sample to nulliparous (first births). Sample
includes all term, singleton, vertex deliveries with a trial of labor. Those attempting vaginal births following
C-section (VBACs) are dropped. Restricted to the largest set of connected hospitals. Quantiles (denoted
B and B′) are determined by a hospital’s raw NTSV unscheduled C-section rate over the sample period.
First row reports the difference in average C-section rate between hospitals in group B vs B′. The second
row reports the difference in average hospital fixed effects among hospitals in group B vs B′. The third row
reports the difference in average physician fixed effect among hospitals in group B vs B′. Standard errors (in
parentheses) are calculated by bootstrap with 100 repetitions. * indicates p < 0.10, ** for p < 0.05, and ***
for p < 0.01.
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Table A4: Additive decomposition alternative specification: Dropping “stayers”

Estimator Top vs. Bottom
50% 25% 10% 5%

∆ in C-section Rate...
... Overall ĉB − ĉB′ 0.141 0.230 0.344 0.427
... Due to hospitals γ̂B − γ̂B′ 0.100 0.176 0.238 0.294
... Due to physicians γ̂j(B) − γ̂j(B′) 0.033 0.042 0.083 0.107
Share of ∆ due to...
... Hospitals γ̂B−γ̂B′

ĉB−ĉB′
0.711∗∗∗ 0.765∗∗∗ 0.693∗∗∗ 0.688∗∗∗

(0.094) (0.084) (0.090) (0.108)
... Physicians γ̂j(B)−γ̂j′(B)

ĉB−ĉB′
0.232∗∗ 0.181∗∗ 0.243∗∗∗ 0.250∗∗

(0.094) (0.083) (0.090) (0.109)
N hospitals 1,245 629 256 128
N physician-hospital pairs 7,242 2,580 755 306
N deliveries 238,048 77,496 18,510 5,578

Notes: Reports results from Equation (4). In this alternative specification, we drop all physicians with only
one practice location from the sample. Restricted to the largest set of connected hospitals. Quantiles (denoted
B and B′) are determined by a hospital’s raw NTSV unscheduled C-section rate over the sample period.
First row reports the difference in average C-section rate between hospitals in group B vs B′. The second
row reports the difference in average hospital fixed effects among hospitals in group B vs B′. The third row
reports the difference in average physician fixed effect among hospitals in group B vs B′. Standard errors
(in parentheses) are calculated by bootstrap with 100 repetitions. Births are restricted to nulliparous, term,
singleton, and vertex (NTSV) without a scheduled C-section. * indicates p < 0.10, ** for p < 0.05, and ***
for p < 0.01.
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Table A5: Additive decomposition alternative specification: Multihomers with more balanced
patient shares

Estimator Top vs. Bottom
50% 25% 10% 5%

∆ in C-section Rate...
... Overall ĉB − ĉB′ 0.115 0.189 0.282 0.344
... Due to hospitals γ̂B − γ̂B′ 0.072 0.103 0.133 0.202
... Due to physicians γ̂j(B) − γ̂j(B′) 0.036 0.073 0.133 0.121
Share of ∆ due to...
... Hospitals γ̂B−γ̂B′

ĉB−ĉB′
0.624∗∗∗ 0.544∗∗∗ 0.472∗∗∗ 0.585∗∗∗

(0.135) (0.109) (0.121) (0.129)
... Physicians γ̂j(B)−γ̂j′(B)

ĉB−ĉB′
0.309∗∗ 0.389∗∗∗ 0.470∗∗∗ 0.350∗∗

(0.135) (0.110) (0.122) (0.130)
N hospitals 878 441 176 91
N physician-hospital pairs 10,057 4,179 1,312 578
N deliveries 378,987 152,911 44,527 16,938

Notes: Reports results from Equation (4). In this alternative specification, we only include “multi-homer”
shifts at hospitals where at least 20% of a physician’s NTSV caseload. This limits concern over bias in the
hospital environment component, leading to mis-measurement of the physician share. Restricted to the
largest set of connected hospitals. Quantiles (denoted B and B′) are determined by a hospital’s raw NTSV
unscheduled C-section rate over the sample period. First row reports the difference in average C-section rate
between hospitals in group B vs B′. The second row reports the difference in average hospital fixed effects
among hospitals in group B vs B′. The third row reports the difference in average physician fixed effect
among hospitals in group B vs B′. Standard errors (in parentheses) are calculated by bootstrap with 100
repetitions. Births are restricted to nulliparous, term, singleton, and vertex (NTSV) without a scheduled
C-section. * indicates p < 0.10, ** for p < 0.05, and *** for p < 0.01.
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Table A6: Review of policies, interventions, and other factors impacting C-section rates

Paper Policy Impact on C-Section Rate
Sandall et al., 2024 Midwife Care -1 pp (16%→15%)
Main et al., 2019 CMQCC Supportive Vaginal

Birth Collaborative partici-
pating hospitals 1

-4.3 pp (29.3% → 25.0%)

California C-section decline
after CMQCC state-wide ini-
tiatives

-3.2pp

McGrath and Kennell, 2008 RCT of Doula support during
labor 2

-11.6 pp (25.0% → 13.4%)

Bohren et al., 2017 Meta analysis on doula sup-
port in labor3

-3.7% (14.6% → 10.9%)

Johnson et al., 2016 OBs delivering “own” pa-
tients4

+4.7 pp (15.4% → 20.1%

Johnson and Rehavi, 2016 Physician-mother’s own birth -2.14 pp (base of 29.1%)
Johnson and Rehavi, 2016 Delivery at HMO-owned hos-

pital
-5 pp 5

Notes: Table presents estimates from a literature review of policies, interventions, and other factors
impacting C-section rates to contextualize our effect size.
1California Maternal Quality Care Collaborative (CMQCC) partnered with 56 hospitals to lower NTSV
cesarean delivery rate. A toolkit was provided including guidelines for active phase arrest, labor support
techniques, transparency in C-section rate, along with other information aimed at reducing NSTV
C-section rate.
2Effect of randomized doula support in labor among 224 nulliparous women with uncomplicated pregnan-
cies in Cleveland, Ohio from 1988 - 1992
3 Meta analysis of 24 RCTS of continuous support during childbirth. The authors note this evidence is of
low quality due to limitations of the study designs and large variation in effect size.
4 Patients for whom the OBGYN had a prenatal relationship with.
5 Approximately half of this difference is due to scheduled C-sections and the other half from unscheduled
C-sections.
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Table A7: Effect of physician C-section intensity on P(C-section delivery)

(1)
Dependent Variable: C-section Delivery (0/1)

C-section Intensity 0.211*** (0.0125)
(0.0125)

Induction 0.0466*** (0.00187)
(0.00187)

(Pre)eclampsia 0.103*** (0.00270)
(0.00270)

Adv. Maternal Age 0.107*** (0.00392)
(0.00392)

Macrosomia 0.333*** (0.00638)
(0.00638)

Any prenatal visit w delivering phys. 0.00855*** (0.00165)
(0.00165)

Obesity 0.150*** (0.00280)
(0.00280)

Diabetes 0.0810*** (0.00308)
(0.00308)

Constant 0.153*** (0.00111)
(0.00111)

Mean of Dep. Var. 0.201
F-Statistic 1391.23
# Physicians (Clusters) 12,256
N 570,617

Notes: Table presents estimates from the first stage regression described in Equation (10). An observation
is a delivery (patient-physician pair linked to a birth outcome). Fixed effects included for hospital-month-
year and hospital-day-of-week. The coefficient on C-section intensity implies that a 10 percentage point
increase in C-section intensity increases p(C-section) by 2.11 percentage points. A 10 percentage point
increase is roughly equivalent to a one standard deviation increase, or moving from the 25th percentile to
the 75th percentile of physician intensity. Standard errors in parentheses are clustered at the physician
level. * p<.10, ** p<.05, ***p<.01
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Table A8: Effect of Physician C-section Intensity on Postpartum Healthcare Utilization

Mean Reduced form
Outcome (1) (2) (3)
Postpartum care visits (60 days):
Any lactation visit 15.67% -0.020 -0.019

(0.075) (0.075)
Any immediate postpartum visit 4.28% 0.323∗∗∗ 0.323∗∗∗

(0.086) (0.086)
Any postpartum follow-up visit 45.67% 0.092 0.100

(0.140) (0.139)
N postpartum follow-up visits 0.60 0.335 0.343

(0.254) (0.251)

Place of mental health diagnosis (60 days):
Mental diagnosis at ER 0.48% 0.009 0.008

(0.011) (0.011)
Mental diagnosis at postpartum follow-up visit 0.71% -0.001 -0.001

(0.015) (0.015)

Place of mental health diagnosis (1 year):
Mental diagnosis at ER 3.06% 0.065 0.059

(0.045) (0.044)
Mental diagnosis at postpartum follow-up visit 0.85% -0.029 -0.029

(0.025) (0.025)
Baseline patient controls ✓ ✓

Additional patient controls ✓

Hospital-month-year ✓ ✓

Hospital-day of week ✓ ✓

Note: The ICD diagnosis codes differentiate between postpartum visits for lactation, “immediate” postpartum
visits (often in the hospital following delivery), and “follow-up” postpartum visits (typically outpatient). The
figure shows the effect of a 10 percentage point increase in physician C-section intensity on the probability of
each postpartum visit type, as well as the total count of postpartum follow-up visits. Outcomes within 60 days
restricted to only beneficiaries enrolled in Medicaid in the month following delivery, N = 511,558. Outcomes
within 1 year restricted to only beneficiaries continuously enrolled for one year following delivery, N = 237,634
. Controls are included for induction, preeclampsia, eclampsia, advanced maternal age, macrosomia, obesity,
diabetes, and an indicator for any prenatal care with the delivering physician. Column 3 adds controls for
race/ethnicity, indicators for > 20 prenatal claims or zero prenatal claims, prenatal mental health disorder,
diabetes, hypertension, and asthma. Fixed effects for hospital-month-year of delivery are included. Standard
errors are clustered at the physician level. * indicates p < 0.10, ** for p < 0.05, and *** for p < 0.01.
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B. Variable Construction

B.1 Identifying Births in Medicaid Claims

We follow Approach 4 in Auty et al., 2024 to identify live births, which they find achieves

the best match for birth counts relative to CDC birth record data (NVSS). This method

defines a “birth” claim as any claim with a diagnosis code in Table A9 in either the Medicaid

inpatient (IP) or other-services (OT) files. In 2015, Medicaid transitioned from reporting

claims in MAX files to T-MSIS (TAF) files. In our main sample, we only use deliveries from

the TAF files (this restriction only applies to the 2015 transition year). Due to data entry

differences in the MAX and TAF files, the variable construction is slightly different between

the files, leaving us cautious about using both data sources in the same analysis.

Table A9: Diagnosis codes associated with deliveries

Description ICD-9 Diagnosis ICD-10 Diagnosis
Encounter for care and examination of mother – Z39.0
immediately after delivery
Encounter for full term uncomplicated delivery 650 O80
Cesarean delivery, without mention of indication 669.71, 669.70 O82
Single liveborn V27.0 Z37.0
Single stillborn V27.1 Z37.1
Twins, both liveborn V27.2 Z37.2
Twins, one stillborn one liveborn V27.3 Z37.3
Twins, both stillborn V27.4 Z37.4
Other multiple birth, all liveborn V27.5 Z37.5X
Other multiple birth, some liveborn V27.6 Z37.6X
Other multiple birth, all stillborn V27.7 Z37.7
Unspecified outcome of delivery V27.9 Z37.9

When we observe multiple “deliveries” to the same beneficiary within seven days, we group

these as one birth. To construct our patient health characteristics, we take the maximum

value over all birth claims within seven days. For example, if a patient has two “birth” claims

within seven days, if either claim has a billing code associated with C-section delivery, we

code this patient as delivering via C-section. In cases when we observe two birth episodes

within nine months, we only include the earlier observed birth.
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B.2 Identifying Delivering Physician and Hospital

For each birth claim, we identify the hospital and individual physician associated with the

delivery. Claims in the IP file list operating provider, servicing provider, and billing provider.

Each provider is identified by a National Provider Identifier (NPI). We link NPI to the

Centers for Medicare and Medicaid Services (CMS) National Plan and Provider Enumeration

System (NPPES) database, which details the provider type (individual physician, group

practice, or hospital) and taxonomy (e.g., OB/GYN).

We define the delivering physician on each claim as the servicing provider whenever this

servicing provider is an individual physician. In cases where there is no individual servicing

provider listed, we instead use the individual operating provider. In cases where there are

multiple individual physicians listed, we keep the physician with taxonomy OB/GYN in

the NPPES records (if there is an OB/GYN listed). In our final data cut, we require the

delivering NPI to be associated with an OB/GYN, family physician, or general practice

physician. Of births in our final sample 98% are delivered by an OB/GYN.

To identify the hospital of delivery, we use the billing provider when this NPI is associated

with an organization in NPPES. We then map from billing provider NPI to a masterlist of

all hospitals from the Agency for Healthcare Research and Quality (AHRQ) based on the

NPPES practice address. We use this strategy as hospitals can have more than one billing

NPI. In our final sample, we only keep births that link to a known hospital from the AHRQ

masterlist.

B.3 Delivery Method

Table A10 shows the full list of all DRG, procedure and diagnosis codes we use to define

C-section deliveries. We assume all births not coded as C-sections are vaginal deliveries.

Note that this list includes several out-of-date DRG codes and should be used with caution if

applied to other settings. We err on the side of including any possible C-section code, since

all claims are first restricted to only delivery claims. This increases the likelihood that these

codes refer to a C-section rather than another health outcome.
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Table A10: ICD codes related to C-section delivery

Code Type Code Description

MS-DRG (est. 2008) 765 Cesarean section with complication

(CCM/MCC)

MS-DRG (est. 2008) 766 Cesarean section without complication

(CCM/MCC)

MS-DRG (est. 2017) 783 C-section w sterilization w MCC

MS-DRG (est. 2017) 784 C-section w sterilization w CC

MS-DRG (est. 2017) 785 C-section w sterilization w/o CC/MCC

MS-DRG (est. 2017) 786 C-section w/o sterilization w MCC

MS-DRG (est. 2017) 787 C-section w/o sterilization w CC

MS-DRG (est. 2017) 788 C-section w/o sterilization w/o CC/MCC

APR-DRG 540 Cesarean delivery

ICD-10 Procedure 10D00Z0∗ Extraction of Products of Conception, Classi-

cal, Open Approach

ICD-10 Procedure 10D00Z1 Extraction of Products of Conception, Low

Cervical, Open Approach

ICD-10 Procedure 10D00Z2 Extraction of Products of Conception, Ex-

traperitoneal, Open Approach

ICD-9 Procedure 74.0 Classical C-section

ICD-9 Procedure 74.1 Low cervical C-section

ICD-9 Procedure 74.2 Extraperitoneal C-section

ICD-9 Procedure 74.4 C-section other type (NEC)

ICD-9 Procedure 74.99 C-section w no specific indication (NOS)

CPT Code 59510 Routine obstetric care including antepartum

care, cesarean delivery, and postpartum care

CPT Code 59514 Cesarean delivery only

Continued on next page
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(Continued from previous page)

Code Type Code Description

CPT Code 59515 Cesarean delivery only, including postpartum

care

CPT Code 59618 Routine obstetric care including antepartum

care, cesarean delivery, and postpartum care,

following attempted vaginal delivery after pre-

vious cesarean delivery

CPT Code 59620 Cesarean delivery only, following attempted

vaginal delivery after previous cesarean deliv-

ery

CPT Code 59622 Cesarean delivery only, following attempted

vaginal delivery after previous cesarean deliv-

ery; including postpartum care

CPT Code 01961 Anesthesia for cesarean delivery only

CPT Code 01968 Anesthesia for cesarean delivery following neu-

raxial labor analgesia/anesthesia

ICD-9 Diagnosis 66970 Cesarean delivery, without mention of indica-

tion, unspecified as to episode of care or not

applicable

ICD-9 Diagnosis 66971 Cesarean delivery, without mention of indica-

tion, delivered, with or without mention of

antepartum condition

ICD-9 Diagnosis 64981 Spontaneous labor 37-39 weeks gestation,

with delivery by (planned) cesarean section

ICD-9 Diagnosis 64982 Spontaneous labor 37-39 weeks gestation,

with delivery by (planned) cesarean section,

with postpartum complication

Continued on next page
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(Continued from previous page)

Code Type Code Description

ICD-9 Diagnosis V30.01 Single liveborn, delivered by cesarean section

ICD-9 Diagnosis V31.01 Twin birth, mate liveborn, delivered by ce-

sarean section

ICD-9 Diagnosis V32.01 Twin birth, mate stillborn, delivered by ce-

sarean section

ICD-9 Diagnosis V33.01 Twin birth, unspecified whether mate live-

born or stillborn, delivered by cesarean sec-

tion

ICD-9 Diagnosis V34.01 Other multiple birth (three or more), mates

all liveborn, delivered by cesarean section

ICD-9 Diagnosis V35.01 Other multiple birth (three or more), mates

all stillborn, delivered by cesarean section

ICD-9 Diagnosis V37.01 Other multiple birth (three or more), unspec-

ified whether mates liveborn or stillborn, de-

livered by cesarean section

ICD-9 Diagnosis V39.01 Liveborn, unspecified whether single, twin or

multiple, delivered by cesarean section

ICD-10 Diagnosis O82 Encounter for cesarean delivery without indi-

cation

ICD-10 Diagnosis O7582 Spontaneous labor between 37-39 weeks of

gestation w delivery by (planned) C-section

ICD-10 Diagnosis Z38.01 Single liveborn infant, delivered by cesarean

ICD-10 Diagnosis Z38.31 Twin liveborn infant, delivered by cesarean

ICD-10 Diagnosis Z38.62 Triplet liveborn infant, delivered by cesarean

ICD-10 Diagnosis Z38.64 Quadruplet liveborn infant, delivered by ce-

sarean

Continued on next page
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(Continued from previous page)

Code Type Code Description

ICD-10 Diagnosis Z38.66 Quintuplet liveborn infant, delivered by ce-

sarean

ICD-10 Diagnosis Z38.69 Other multiple liveborn infant, delivered by

cesarean

∗ We find approximately 8,000 claims with code 10D00Z (non-existent billing code). These are assumed

to be a C-section as well.

A note on DRG codes: Medical Severity Diagnosis Related Groups (MS-DRGs) are three

digit codes that refer to the principal diagnosis or procedure, typically specifying whether

there were comorbidities and complications (CCs) or major comorbidities and complications

(MCCs). All Patient Refined Diagnosis Related Groups (APR-DRGs) are an alternative way

to classify patients by primary diagnosis and the severity. Before Oct 1, 2007 the MS-DRG

code associated with delivery were 370-375, with 370 and 375 referring to C-section with

and without complications, respectively HCUP Statistical Briefs, Table 4. After Oct 1, 2007

DRG codes 765 and 766 were used for C-section with and without complications, respectively.

In fiscal year 2018-2019, MS-DRG 765 and 766 were deleted and subdivided by severity

of complications (MCC vs CC) and with/ without sterilization. Codes 783, 784, 786, 787

now refer to C-sections with complications, while 785 and 788 refer to C-sections without

complications CMS Clinical Episode Construction Specifications Appendix A. Note that

MAX OT does not contain DRG information.

B.4 Scheduled C-section

We consider a C-section to be scheduled if the billing claim(s) associated with delivery have

no evidence of trial of labor. We drop all C-sections without evidence of trial of labor from

our main analysis. We also drop any claim with a diagnosis of “onset of labor with delivery

by (planned) cesarean section” (ICD-10: O75.82, ICD-9: 649.81, 649.82) or with a diagnosis

of placenta previa on the delivery claim. Table A11 shows all diagnoses included in our trial
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of labor definition. This definition builds on the algorithm from Gregory et al., 2002.

Table A11: Diagnoses used to define C-section occurring after trial of labor

Description ICD-9 Diagnosis ICD-10 Diagnosis
Obstructed labor 660.x O64.x, O65.x, O66.x
Abnormalities of forces of labor 661.x O62.x
Long labor 662.x O63.x
Prolapse of umbilical cord 663.0x O69.0x
Breech converted to cephalic 652.1x
Disproportion in pregnancy, labor and delivery 653.x O33.xx
Fetal distress 656.3x, 659.7x O76, O77.x
Maternal distress 669.0x O75.0
Delayed delivery after AROM 658.31 O75.5
Maternal exhaustion complicating labor O75.81
Failed induction of labor 659.0x O61.x
Use of forceps or vacuum extractor 669.5x included in O66

Notes:(Gregory et al., 2002) use the following diagnoses to indicate attempting vaginal birth: fetal distress,
labor abnormalities (including disproportion, obstructed labor, abnormal forces of labor), cord prolapse,
and breech converted to vertex. We add maternal distress or exhaustion during labor and delivery, delayed
delivery after AROM, failed induction, and use of forceps or vacuum extraction. These are all conditions that
indicate labor had been attempted prior to the C-section.

B.5 Induction of Labor

We follow Main, 2016 advice for coding labor inductions, which gives guidelines on appropriate

ICD-10-PCS billing codes for three categories of induction.

1. Oxytocin/Pitocin when used for labor induction should be coded as 3E033VJ. This

code should not be used for oxytocin use in labor augmentation or for the prevention

of hemorrhage.

2. Cervical ripening using cervical inserts should be coded as 3E0P7GC.

3. Cervical Dilators using mechanical methods (e.g. balloon) should be coded as 0U7C7ZZ

(Dilation of Cervix, Via Natural or Artificial Opening) or 0U7C7DZ (Dilation of Cervix

with Intraluminal Device, Via Natural or Artificial Opening).

A note that Artificial Rupture of Membranes (AROM) billing code 10907ZC makes no

distinction between labor induction and labor augmentation. Given that AROM is mainly
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used for augmentation we do not include this in our definition of induction, but use this as a

proxy for augmentation of labor.

B.6 Nulliparous

We consider a patient to be nulliparous if any of the billing codes in Table A12 are used

during delivery or in any prenatal care claims.45

Table A12: Nulliparous Definition

Description Codes
Encounter for supervision of normal first pregnancy. ICD-9 V22.0, ICD-10 Z34.00 - Z34.03
Supervision of elderly (young) primigravida. ICD-9 V23.81, V23.83,

ICD-10 O0951.x, O09.6x

In cases where we identify a birth as a first pregnancy based on diagnosis codes, but

observe a prior birth within our Medicaid claims data (2011-2019), this birth is not considered

nulliparous. Note that our definition of nulliparous will be an underestimate, since we rely

on providers’ billing for supervision of a first pregnancy. See Table A14 for comparison to

NVSS rates.

B.7 Preterm

We define preterm birth to be gestation < 37 weeks (following the standard definition used

in many settings, including NVSS). These are identified by birth claims with any of the

following diagnosis codes:

• ICD-10 Z3A.X for pregnancy at X weeks of gestation where X < 37.

• ICD-10 codes starting with O60.1, refer to preterm labor with preterm delivery

• ICD-9 644.20, 644.21 - early onset of delivery.

45Prenatal care claims in our setting are OT claims related to pregnancy within nine months prior to the
patient’s delivery.
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B.8 Mother-Baby Linking

We link mothers to newborns using the multi-round deterministic algorithm in Orr et al.,

2024. Rounds 1–3 use unique matches that include the plan “Case ID” (with delivery/birth

dates and facility constraints); later rounds (4–6) relax criteria by dropping Case ID to

recover pairs with missing or inconsistent Case IDs. We retain a unique best link per delivery

using the algorithm’s priority order. Table A13 shows the match rate of the full sample of

births by state. Our analysis only includes states where ≥ 75% of births are successfully

linked to an infant Medicaid beneficiary.

Table A13: Match rates by state for mother–baby linkage

Share of births matched (%)

State Rounds 1–3 Rounds 1–6

AK 78.343 92.858

AL 55.119 69.426

AR 13.796 67.809

AZ 74.898 79.679

CA 35.876 38.620

CO 48.961 58.242

CT 0.131 57.503

DC 46.334 61.322

DE 85.624 96.006

FL 49.362 83.401

GA 63.219 80.468

HI 85.953 89.553

IA 81.266 94.461

ID 85.894 92.427

IL 78.327 87.154

IN 85.117 95.103

Continued on next page
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Share of births matched (%)

State Rounds 1–3 Rounds 1–6

KS 87.062 94.550

KY 76.899 92.895

LA 87.157 96.132

MA 52.089 80.411

MD 72.023 88.455

ME 82.821 93.807

MI 84.014 92.849

MN 39.926 54.343

MO 0.592 9.947

MS 93.356 97.441

MT 81.789 94.280

NC 0.618 60.528

ND 77.226 83.399

NE 61.450 77.188

NH 86.510 94.177

NJ 1.229 17.969

NM 90.012 96.344

NV 80.293 90.720

NY 84.778 93.869

OH 88.283 96.397

OK 81.888 94.298

OR 56.249 68.220

PA 88.725 95.678

RI 35.043 40.649

SC 0.882 45.838

Continued on next page
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Share of births matched (%)

State Rounds 1–3 Rounds 1–6

SD 79.326 92.189

TN 28.351 39.943

TX 0.208 48.230

UT 91.861 94.246

VA 71.663 90.151

VT 70.399 84.113

WA 0.339 14.776

WI 83.837 94.046

WV 62.251 73.657

WY 81.520 93.423

Notes: Column “matched rounds 1–3” re-

ports links obtained from the strict Case-

ID passes of Orr et al., 2024. Column

“matched rounds 1–6” reports the cumula-

tive match rate after all passes, including

those that do not use Case ID.
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C. Benchmarking Health Outcomes Against National

Vital Statistics Data

While claims data provides granularity and linkage to patients and physicians, many important

pregnancy characteristics (e.g., gestation length, parity) are not directly coded. Instead, we

rely on diagnosis and procedure codes to infer most health risk and outcome variables. In this

section, we benchmark our sample against birth certificate records from the National Vital

Statistics System (NVSS). After delivery, all mothers complete a survey with questions on

demographics, lifestyle, and experience during pregnancy and childbirth. For each birth, the

facility (typically a hospital) also completes a survey on maternal health during both prenatal

care and delivery. In this data, insurance type is recorded, which allows us to compare

our sample to the universe of all births in the US, and to all births funded by Medicaid as

recorded in NVSS.

Table A14 shows sample characteristics and differences for NVSS and Medicaid claims.

Both samples are subject to different types of measurement error, but reassuringly, the

differences between them on most variables are relatively minor. The number of deliveries

also differs slightly. However, Medicaid insurance is under-reported in the NVSS data, because

it is a self-reported question, and some beneficiaries incorrectly report insurance status or

type.

More notable differences include a two percentage point gap in the C-section rate, sug-

gesting we are slightly under-coding C-sections. We also have 10 percentage point lower

induction rate in our sample, likely explained by our reliance on billing codes for induction

using pharmacological means, rather than less invasive forms that may not be coded for

billing. It is unsurprising that our nulliparous variable is also under-coded, given that we

rely on diagnosis codes related to the supervision of a first pregnancy, recorded either during

prenatal visits or delivery, to identify first-time mothers. This is a general billing code, and

may not be used if a more specific procedure or diagnosis is the focus of the claim. Similarly,

our definition of preterm birth relies on billing codes associated with delivery before 37 weeks

of gestation (preterm). Since not all deliveries include information on gestational age, we
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Table A14: Delivery characteristics of Medicaid births, birth certificate data (NVSS) vs.
Medicaid claims data (TAF)

Birth certificates Medicaid claims Difference
(NVSS) (TAF) (TAF) - NVSS)

Age under 18 0.02 0.02 -0.01***
(0.15) (0.13) (0.00)

Advanced maternal age 0.12 0.12 0.01***
(0.32) (0.33) (0.00)

White 0.32 0.37 0.04***
(0.47) (0.48) (0.00)

Black 0.12 0.22 0.10***
(0.32) (0.41) (0.00)

Hispanic 0.27 0.27 -0.01***
(0.45) (0.44) (0.00)

Diabetes 0.07 0.07 -0.00***
(0.26) (0.26) (0.00)

Eclampsia 0.00 0.00 -0.00***
(0.05) (0.03) (0.00)

Induction 0.26 0.16 -0.10***
(0.44) (0.37) (0.00)

Cesarean 0.32 0.29 -0.02***
(0.46) (0.46) (0.00)

Nulliparous 0.33 0.20 -0.13***
(0.47) (0.40) (0.00)

Singleton 0.97 0.94 -0.03***
(0.17) (0.24) (0.00)

Term 0.86 0.95 0.09***
(0.34) (0.22) (0.00)

Vertex 0.97 0.97 0.00***
(0.18) (0.17) (0.00)

Share C-sections w trial of labor 0.25 0.36 0.11***
(0.43) (0.48) (0.00)

N 6,483,679 6,838,837 13,322,516

Notes: Table presents mean, standard deviation, and differences in means for all deliveries covered
by Medicaid and recorded in the NVSS 2016-2019, versus deliveries recorded in Medicaid TAF claims
2016-2019. * indicates p < 0.05, ** for p < 0.01, and *** for p < .001. We use 2015 in our analysis, but
eliminate it from this comparison, because we rely on only T-MSIS (TAF) claims. Since 2015 was a
transition year from MAX to TAF, our 2015 sample is incomplete for some states.
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underestimate the rate of preterm birth and overestimate term births. Our estimated rate of

trial of labor goes in the opposite direction: we identify an 11 percentage point higher rate of

C-sections occurring after trial of labor. Under-reporting of trial of labor is a known issue

with the NVSS birth records data, as noted by Card et al., 2023.

Table A15: Number of Medicaid births in birth certificate data vs. claims data

Birth certificate (NVSS) counts Medicaid (TAF) counts Percent difference

State Total Cesarean Vaginal Total Cesarean Vaginal Total Cesarean Vaginal

Total 6481520 2046128 4433335 6794594 1998217 4796377 4.61 -2.40 7.57

AK 16102 3277 12825 16763 3128 13635 3.94 -4.76 5.94

AL 116539 39128 77411 113867 36914 76953 -2.35 -6.00 -0.60

AR 65697 22013 43684 50747 16333 34414 -29.46 -34.78 -26.94

AZ 167227 43938 123289 171208 43377 127831 2.33 -1.29 3.55

CA 783734 246010 537724 671242 184137 487105 -16.76 -33.60 -10.39

CO 99045 24324 74721 107621 24928 82693 7.97 2.42 9.64

CT 52334 17841 34436 61203 20490 40713 14.49 12.93 15.42

DC 16060 4974 11086 15522 4786 10736 -3.47 -3.93 -3.26

DE 19064 5957 13107 20419 6059 14360 6.64 1.68 8.73

FL 427121 153415 273528 439473 152932 286541 2.81 -0.32 4.54

GA 237313 79571 157450 276457 90128 186329 14.16 11.71 15.50

HI 21544 5460 16084 25089 5861 19228 14.13 6.84 16.35

IA 59462 18316 41146 69282 20144 49138 14.17 9.07 16.26

ID 31533 7693 23840 36549 8456 28093 13.72 9.02 15.14

IL 230635 67984 162572 261213 73366 187847 11.71 7.34 13.46

IN 131435 38854 92565 123775 31746 92029 -6.19 -22.39 -0.58

KS 45195 13742 31453 54087 15457 38630 16.44 11.10 18.58

KY 102929 35531 67286 113010 35874 77136 8.92 0.96 12.77

LA 150399 55400 94999 150885 54256 96629 0.32 -2.11 1.69

Continued on next page
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NVSS Counts TAF Counts Percent Difference

State Total Cesarean Vaginal Total Cesarean Vaginal Total Cesarean Vaginal

MA 79186 24937 54249 111761 33919 77842 29.15 26.48 30.31

MD 113158 37097 75983 128747 26376 102371 12.11 -40.65 25.78

ME 19040 5799 13241 17181 4543 12638 -10.82 -27.65 -4.77

MI 183718 58266 125398 188955 54134 134821 2.77 -7.63 6.99

MN 87046 23114 63932 94359 23079 71280 7.75 -0.15 10.31

MO 112774 33406 79208 121202 32138 89064 6.95 -3.95 11.07

MS 91862 34816 57046 85046 29561 55485 -8.01 -17.78 -2.81

MT 19118 5413 13685 20376 5448 14928 6.17 0.64 8.33

NC 202165 58684 143421 250485 68850 181635 19.29 14.77 21.04

ND 10351 2993 7358 10950 2989 7961 5.47 -0.13 7.57

NE 34331 10157 24174 36471 7976 28495 5.87 -27.34 15.16

NH 11865 3540 8325 10003 2707 7296 -18.61 -30.77 -14.10

NJ 123940 41273 82507 103264 27589 75675 -20.02 -49.60 -9.03

NM 51768 12458 39310 60249 12264 47985 14.08 -1.58 18.08

NV 64077 21523 42554 70478 23179 47299 9.08 7.14 10.03

NY 436055 137830 298120 411815 127079 284736 -5.89 -8.46 -4.70

OH 223706 69549 154107 259478 76380 183098 13.79 8.94 15.83

OK 104046 33330 70716 112692 34579 78113 7.67 3.61 9.47

OR 76388 21215 55173 79043 19966 59077 3.36 -6.26 6.61

PA 180800 54497 126303 227737 65537 162200 20.61 16.85 22.13

RI 20628 6205 14423 16288 4352 11936 -26.65 -42.58 -20.84

SC 112027 37033 74968 122285 37875 84410 8.39 2.22 11.19

SD 14469 3756 10713 16522 3948 12574 12.43 4.86 14.80

TN 156187 49575 106612 125720 31573 94147 -24.23 -57.02 -13.24

TX 730091 247858 481824 838081 281451 556630 12.89 11.94 13.44

Continued on next page
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NVSS Counts TAF Counts Percent Difference

State Total Cesarean Vaginal Total Cesarean Vaginal Total Cesarean Vaginal

UT 46333 11205 35128 52809 11662 41147 12.26 3.92 14.63

VA 121090 39405 81656 142180 44063 98117 14.83 10.57 16.78

VT 9343 2416 6927 9684 2409 7275 3.52 -0.29 4.78

WA 135198 36124 98943 149739 37192 112547 9.71 2.87 12.09

WI 92904 24397 68466 92279 22192 70087 -0.68 -9.94 2.31

WV 35869 12475 23394 40178 12200 27978 10.72 -2.25 16.38

WY 8619 2354 6265 10125 2635 7490 14.87 10.66 16.36

Note: Comparison of births reported as covered by Medicaid in CDC National Vital Statistics (NVSS) and

births identified in Medicaid TAF data, 2016–2019. NVSS counts should not be considered “ground truth,”

as there are known issues of under-reporting Medicaid insurance coverage in birth records data.
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